A Stable Self-Structuring Adaptive Fuzzy Control Scheme for Continuous Single-Input Single-Output Nonlinear Systems

by

Phi Anh Phan
B.Eng. (Mechatronics Eng., Hons.)

Submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy

School of Engineering, University of Tasmania
March 2009
Statement of Originality & Authority of Access

This thesis contains no material which has been accepted for a degree or diploma by the University of Tasmania or any other institution, except by way of background information and has been duly acknowledged in this thesis, and to the best of the author’s knowledge and belief no material has previously been published or written by another person except where due acknowledgement is made in the text of this thesis.

This thesis contains confidential information and is not to be disclosed or made available for loan or copy without the expressed permission of the University of Tasmania. Once released the thesis may be made available for loan and limited copying in accordance with the Copyright Act 1968.

School of Engineering,
University of Tasmania,
Hobart, Tasmania, Australia
Abstract

Adaptive fuzzy control has been an active research area in the past decade. Fundamental issues such as stability, robustness, and performance analysis have been solved. However, one main drawback is the generally fixed structure of the fuzzy controllers, which are normally chosen by trial-and-error in practice. Few attempts to develop self-structuring AFC have been reported, and important issues such as stability, computational efficiency, and implementability have not been investigated thoroughly. In particular, the stability of the system when the structure changes has not been proven. Thus, a more effective self-structuring AFC scheme is desirable.

The main objective of the research is to develop a stable self-structuring AFC scheme for continuous-time single-input-single-output (SISO) uncertain nonlinear systems.

A novel online self-structuring adaptive fuzzy control scheme that is applicable for a number of classes of continuous SISO nonlinear systems is proposed. The applicable classes include affine nonlinear systems, non-affine nonlinear systems, and nonlinear systems in triangular forms. The main features of the proposed control scheme are:

- It needs less restriction on the controlled plants and no restriction on the design parameters.
- It employs a modified adaptive law that guarantees explicit boundedness of adaptive parameters and control action.
- The self-structuring algorithm is relatively simple and guarantees explicit boundedness of the number of rules generated.
- Only triangular membership functions are generated and only 2 membership functions are allowed to overlap to increase the interpretability of generated fuzzy controllers.
- High-gain observers are used when not all the states are measurable and the design of observers is completely separated from the design of controllers.
- For nonlinear systems in triangular forms, only one fuzzy system is needed (unlike the back-stepping approach where one fuzzy system is needed at each step).
• An approximation error estimator and an automatic switching mechanism can be used to further increase the robustness and computational efficiency.

The stability of the overall system, especially when the structure changes, is guaranteed using the Lyapunov stability technique. The overall system is stable in the sense that all the variables are bounded (including number of rules generated) and the tracking error is uniformly ultimately bounded. The proposed control algorithms are implemented in Matlab and Simulink for ease of simulation and practical application. Numerous simulation examples are performed to demonstrate the theoretical results.

The proposed control scheme makes practical application of AFC easier. Designers need to specify only a few design parameters and no longer have to specify the controller structure by trial and error. A simulation or application can be quickly and easily implemented using the developed controllers in Simulink.

Publications

As part of this research, the following papers have been published:

Journal papers:

Conference papers:

Acknowledgements

I would like to thank my supervisor, Dr. Timothy J Gale, for his endless guidance, support and friendship throughout the duration of the research. He was always there whenever I needed help.

I would also like to thank my associate supervisors, Dr. Bernardo A Leo de La Barra and Prof Michael Negnevitsky, for their advices and help in Control and Artificial Intelligence.

Most importantly, I would like to thank my family for their love and support. Without them, I would not have completed this project.

Finally, I would like to thank all my friends who have helped and assisted me during my time at University of Tasmania.
Table of Contents

ABBREVIATIONS ...9

1. CHAPTER 1 INTRODUCTION ...10
 1.1. INTRODUCTION ..10
 1.2. ADAPTIVE FUZZY CONTROL ..10
 1.2.1. What is adaptive fuzzy control? ...11
 1.2.2. Why adaptive fuzzy control? ..11
 1.2.3. Relationship between adaptive fuzzy control and adaptive neural network control13
 1.3. MOTIVATION AND OBJECTIVES ...13
 1.4. OUTLINE OF THE THESIS ...14
 1.5. CONCLUSION ...16

2. CHAPTER 2 GENERAL LITERATURE REVIEW AND PRELIMINARIES17
 2.1. INTRODUCTION ..17
 2.2. A REVIEW ABOUT THE DEVELOPMENT OF ADAPTIVE FUZZY CONTROL17
 2.2.1. Structure ..17
 2.2.1.1. Direct AFC ...17
 2.2.1.2. Indirect AFC ...18
 2.2.1.3. AFC combined with other controllers ..18
 2.2.2. Different classes of nonlinear systems ..20
 2.2.2.1. Affine and non-affine nonlinear systems ..20
 2.2.2.2. Strict-feedback and pure-feedback nonlinear systems ...22
 2.2.2.3. SISO and MIMO nonlinear systems ..24
 2.2.2.4. State-feedback and output feedback nonlinear systems ...25
 2.2.2.5. Continuous and discrete systems ...25
 2.2.3. Adaptive mechanism of fuzzy systems ...26
 2.2.3.1. Only parameters are tuned ...26
 2.2.3.2. Both parameters and structure are adjusted ...26
 2.3. PRELIMINARIES ..27
 2.3.1. Fuzzy system and neural network ...27
 2.3.2. Concepts of stability and boundedness ...27
 2.3.2.1. Stability definitions ..28
 2.3.2.2. Boundedness definitions ..29
 2.3.3. Lyapunov stability theorem ..29
 2.3.3.1. Conditions for stability ...30
 2.3.3.2. Conditions for boundedness ...31
 2.3.4. Universal approximation properties ..31
 2.3.4.1. Universal approximation property for zero-order Takagi-Sugeno fuzzy systems31
 2.4. BASIC INDIRECT ADAPTIVE FUZZY CONTROL FOR SISO AFFINE NONLINEAR SYSTEMS ...33
 2.4. CONCLUSION ..37

3. CHAPTER 3 TWO-MODE INDIRECT ADAPTIVE FUZZY CONTROL WITH APPROXIMATION ERROR ESTIMATOR ..39
 3.1. INTRODUCTION ..39
 3.2. LITERATURE REVIEW ...39
 3.3. TWO-MODE ADAPTIVE FUZZY CONTROL WITH APPROXIMATION ERROR ESTIMATOR39
 3.4. APPLICATIONS ..45
 3.4.1. Control of an inverted pendulum ..45
 3.4.2. Control of a Chua’s chaotic circuit ...47
 3.5. CONCLUSION ...49

4. CHAPTER 4 DIRECT ADAPTIVE FUZZY CONTROL WITH LESS RESTRICTION ON THE CONTROL GAIN ..54
 4.1. INTRODUCTION ..54
 4.2. LITERATURE REVIEW ...54
 4.3. DIRECT ADAPTIVE FUZZY CONTROL WITH LESS RESTRICTION56
 4.4. APPLICATIONS ..62
 4.4.1. Inverted pendulum ..62
4.4.2. Magnetic levitation system ... 63
4.5. CONCLUSION ... 64

5. CHAPTER 5 SELF-STRUCTURING DIRECT ADAPTIVE FUZZY CONTROL 69
5.1. INTRODUCTION .. 69
5.2. LITERATURE REVIEW .. 69
5.3. SELF-STRUCTURING DIRECT ADAPTIVE FUZZY CONTROL FOR AFFINE NONLINEAR SYSTEMS ... 71
5.3.1. Description of the self-structuring algorithm ... 72
5.3.1.1. Criteria for rule generation ... 73
5.3.1.2. Adding a membership function and its related rules when the \(\varepsilon \)-completeness is not satisfied .. 73
5.3.1.3. Replacing a membership function and its related rules when the \(\varepsilon \)-completeness is not satisfied ... 75
5.3.1.4. Adding a membership function and its related rules when \(\varepsilon^T P b_c \) is equal to or larger than \(\text{error}_{\text{threshold}} \) .. 76
5.3.1.5. Replacing a membership function and its related rules when the error measurement \(\varepsilon^T P b_c \) is equal to or larger than \(\text{error}_{\text{threshold}} \) ... 78
5.3.1.6. Parameters .. 79
5.3.2. SSDAFC .. 79
5.3.2.1. When the structure is fixed ... 80
5.3.2.2. When the structure changes .. 81
5.4. EXAMPLES ... 82
5.4.1. Inverted pendulum ... 82
5.4.2. Magnetic levitation .. 84
5.5. CONCLUSION ... 85

6. CHAPTER 6 SELF-STRUCTURING DIRECT ADAPTIVE FUZZY CONTROL FOR NON-AFFINE NONLINEAR SYSTEMS ... 90
6.1. INTRODUCTION .. 90
6.2. LITERATURE REVIEW .. 90
6.3. SSDAFC FOR NON-AFFINE NONLINEAR SYSTEMS 92
6.3.1. Existence of an ideal control law ... 92
6.3.2. Stability analysis .. 93
6.4. EXAMPLES .. 95
6.4.1. Application 1 .. 95
6.4.2. Application 2 .. 97
6.5. CONCLUSION ... 98

7. CHAPTER 7 EXTENSION TO THE CONTROL OF OTHER CLASSES OF SISO NON-AFFINE NONLINEAR SYSTEMS ... 105
7.1. INTRODUCTION .. 105
7.2. SSDAFC OF SYSTEMS IN THE FORM (7.2) ... 106
7.2.1. Control of system (7.2) with strong relative degree \(\rho = n \) 107
7.2.2. Control of system (7.2) with strong relative degree \(\rho < n \) 107
7.3. SSDAFC OF SYSTEMS IN THE TRIANGULAR FORM (7.3) 108
7.4. OUTPUT FEEDBACK SSDAFC ... 111
7.5. EXAMPLE ... 117
7.5.1. Continuously stirred tank reactor (CSTR) system without zero dynamics ... 117
7.5.2. Continuously stirred tank reactor (CSTR) system with zero dynamics 120
7.5.3. Third-order system in triangular form (7.3) ... 122
7.6. CONCLUSION ... 124

8. CHAPTER 8 MATLAB IMPLEMENTATION .. 133
8.1. INTRODUCTION .. 133
8.2. PROGRAMMING .. 133
8.3. ADAPTIVE FUZZY CONTROL SIMULINK LIBRARY 134
8.3.1. DAFC block .. 134
8.3.2. SSDAFC block .. 136
Abbreviations

AFC: Adaptive Fuzzy Control
AIC: Adaptive Intelligent Control
ANNC: Adaptive Neural Network Control
CSTR: Continuous Stirred Tank Reactor
FLC: Fuzzy Logic Controller
GUI: Graphical User Interface
MIMO: Multi Input Multi Output
NN: Neural Network
SISO: Single Input Single Output
SSAFC: Self-Structuring Adaptive Fuzzy Control
SSDAFC: Self-Structuring Adaptive Fuzzy Control
UUB: Uniform Ultimate Boundedness or Uniformly Ultimately Bounded

