In-Line Solid-Phase Extraction for Sensitivity Enhancement in Capillary Electrophoresis

by

Jonathan Raven Eric Thabano, BSc MPhiL

A Thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

UNIVERSITY OF TASMANIA

Submitted 25 March 2009
DECLARATION

To the best of my knowledge, this thesis contains no copy or paraphrase of material previously published or written by another person, except where due reference is made in the text of the thesis.

Jonathan Raven Eric Thabano
25 March 2009

This thesis may be made available for loan, or limited copying in accordance with the Copyright Act of 1968.

Jonathan Raven Eric Thabano
25 March 2009
ACKNOWLEDGEMENTS

I would like to thank my primary supervisor Dr Michael C. Breadmore for his patience, enthusiasm and guidance necessary to complete the project, and especially in aspects of capillary electrophoresis.

My co-supervisor Prof Paul R. Haddad, for trusting me to undertake such huge work in the research group and under his direction. Thank you for your deep encouragements in my academic pursuit and also ensuring the nurturing of a new scientist in me.

I would also like to thank the members of the supervision team, Dr Joseph (Joe) P. Hutchinson and Dr Cameron (Cam) Johns for taking the time during their commitments to review my articles before they went into final stages of publication. Special thanks also go to Dr Joe for the very helpful comments in the laboratory during the experiments in progress. Also special thanks go to Dr Christopher J. Evenhuis and Rosemary – for support during my research and stay in Hobart, Dr Jiangfeng Li - for encouraging me to read wide including original sources, Dr Joselito P. Quirino - for encouraging me to be a star in my pursuits, Prof Pavel N. Nesterenko - for insightful discussions on useful aspects of the work, Prof Frantisek Svec - for early discussions for necessary directions in synthesising polymer monoliths, Dr Emily Hilder - for training on instrumentation necessary for preparing and characterising polymer monoliths, and Prof David Chen- for discussions in aspects of designing better experiments for the pH step, and Mr David Schaller for consistently being friendly and helpful in and off-campus.

Thanks also to all the past and present members of ACROSS during my research, including but not limited to Mr Marc Guijt and Dr Rosemary Guijt, Mr Elijah Marshall, Mr Oscar Potter, Dr Mirek Macka, Dr Jianfeng Li, Dr Greg Discinoski, Dr Robert (Rob) Shellie.

Many thanks to members of the Analytical Science Tasmania (AST), namely Dr Thomas Rodemann, Dr Karsten Goemann, Mr Peter Dove and Mr John Davis.
I am very grateful to the faculty and staff members in the School of Chemistry for making me feel welcome during my project. Special thanks to the University of Tasmania for scholarship and tuition for the duration of my work.

Most importantly I would like to thank my beautiful wife Dorothy Thabano for the full time support both emotionally and socially and for telling me that she loves me throughout. My dear daughters Ketshephile and Ona, for asking me how it is going while I went through tough times, especially my last Tasmanian born who learnt how to talk while I kept busy with the research and would ask me using her first sentences “Why are you doing that?” I express my sincere gratitude to my parents Golekilwe and Cephas Thabano, who raised me to be what I am and a dedication to my dad who passed away before he witnessed the completion of this thesis. Above all to the almighty God for giving me the 24 hour strength (Psalms 27:1..The Lord is my light and my salvation..and strength of my life..) to undertake such massive work.
LIST OF ABBREVIATIONS

BET Bremmer-Emmet-Teller
BGE Background electrolyte
CE Capillary Electrophoresis
CEC Capillary electrochromatography
CZE Capillary zone electrophoresis
EOF Electroosmotic flow
FTIR Fourier transform infra red
i.d. Internal diameter
IE Ion exchange
Lcc Localised column capacity
MA Methacrylic acid
o.d. Outer diameter
ODS Octadecyl silica
OT Open tubular
RP Reversed phase
SEM Scanning electron microscopy
SPE Solid-phase extraction
UV Ultra violet
WCX Weak cation exchange
γ-MAPS 3-(methacryloyloxypropyl)trimethoxy silane

LIST OF PUBLICATIONS

<table>
<thead>
<tr>
<th>Type of Publication</th>
<th>Number</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Papers in refereed journals</td>
<td>5</td>
<td>1-5</td>
</tr>
<tr>
<td>Refereed posters at local and international meetings</td>
<td>3</td>
<td>6,8,10</td>
</tr>
<tr>
<td>Contributions to talks at international and local meetings</td>
<td>2</td>
<td>7,9</td>
</tr>
</tbody>
</table>

7. Thabano J.E.R., Breadmore M.C., Johns C.A., Hutchinson J.P. and Haddad P.R., *Preconcentration and Solid-Phase Extraction on a Weak Cationic Exchange Monolithic Column with Elution using a pH Step Gradient*, *14th Annual

Table of Contents

TITLE PAGE.. i
DECLARATION... ii
ACKNOWLEDGEMENTS... iii
LIST OF ABBREVIATIONS... v
LIST OF PUBLICATIONS... vi
ABSTRACT.. xii

CHAPTER 1 INTRODUCTION AND LITERATURE REVIEW

1.1 INTRODUCTION.. 1
1.2 THEORETICAL CONSIDERATIONS OF CZE.. 5
1.2.1 Electroosmotic Flow.. 5
1.2.2 Effective mobility .. 7
1.3 DETECTION IN CE... 8
1.4 PRECONCENTRATION IN CE... 10
1.4.1 Electrophoretic preconcentration methods .. 12
1.4.2 Chromatographic preconcentration .. 14
1.5 GRADIENT ELUTION IN SPE-CE .. 42
1.6 PROJECT AIMS.. 46
1.7 REFERENCES.. 48

CHAPTER 2 GENERAL EXPERIMENTAL

2.1 INSTRUMENTATION.. 56
CHAPTER 4 CAPILLARY ELECTROPHORESIS OF NEUROTRANSMITTERS USING IN-LINE SPE AND PRECONCENTRATION USING A METHACRYLATE-BASED WEAK CATION-EXCHANGE MONOLITHIC STATIONARY PHASE AND A PH STEP GRADIENT

4.1 INTRODUCTION .. 93
4.2 EXPERIMENTAL .. 95
 4.2.1 Preparation of electrolytes .. 95
 4.2.2 Procedure for preparation of the poly (MA-co-EGDMA) SPE monolith 95
 4.2.3 Procedure for sample preconcentration .. 96
 4.2.4 Analysis of urine .. 97
4.3 RESULTS AND DISCUSSION ... 97
 4.3.1 Preconcentration and elution using a pH step gradient 97
 4.3.2 Optimisation of electrolyte pH ... 100
 4.3.3 Optimisation of electrolyte concentration .. 102
 4.3.4 SPE of Dop and Ep ... 103
 4.3.5 SPE-CE ... 107
 4.3.6 Application to urine ... 109
4.4 CONCLUSIONS .. 112
4.5 REFERENCES ... 113

CHAPTER 5 SELECTIVE EXTRACTION AND ELUTION OF WEAK BASES BY IN-LINE SOLID-PHASE EXTRACTION CAPILLARY ELECTROPHORESIS USING A pH STEP GRADIENT AND A WEAK CATION-EXCHANGE MONOLITH

5.1 INTRODUCTION .. 115
5.2 EXPERIMENTAL .. 116
 5.2.1 Preparation of electrolytes .. 116
 5.2.2 Procedure for preparation of the poly (MA-co-EGDMA) SPE monolith 116
 5.2.3 Procedure for performing pH-selective extraction and elution 117
5.3 RESULTS AND DISCUSSION ... 117
5.3.1 Fundamental properties of the SPE-CE system 117
5.3.2 CE separation of IMI, BA, LUT and PPA ... 119
5.3.3 Effect of analyte concentration on the localised column capacity 121
5.3.4 Optimisation of the low pH electrolyte concentration 123
5.3.5 Optimisation of the high pH electrolyte concentration 125
5.3.6 Elution, extraction and separation of IMI, LUT and PPA 127
5.4 CONCLUSIONS .. 133
5.5 REFERENCES ... 134

CHAPTER 6 SILICA NANOPARTICLES-TEMPLATED METHACRYLIC ACID MONOLITHS FOR IN-LINE SOLID-PHASE EXTRACTION –CAPILLARY ELECTROPHORESIS

6.1 INTRODUCTION .. 135
6.2 EXPERIMENTAL .. 137
6.2.1 Reagents and chemicals ... 137
6.2.2 Procedures .. 138
6.3 RESULTS AND DISCUSSION .. 140
6.3.1 Proof-of-concept: silica nano-templated polymer monoliths 141
6.3.2 Optimisation of templating conditions .. 144
6.3.3 SPE-CE ... 147
6.3.4 Extension to pharmaceutical analysis ... 153
6.4 CONCLUSIONS .. 155
6.5 REFERENCES ... 156

CHAPTER 7 GENERAL CONCLUSIONS AND FUTURE DIRECTIONS
ABSTRACT

This work presents a systematic study into the use of weak acid monolithic columns and moving pH boundaries for in-capillary solid-phase extraction – capillary electrophoresis.

A new methacrylic porous polymer monolith was prepared via photoinitiated free radical polymerisation both in bulk and inside Teflon™ coated 75 μm i.d. x 365 μm o.d. capillaries. Bulk monoliths were used for characterisation, and it was found that the pore size properties of the monolith could be controlled from 1.4 μm to 3 μm by variation of the monomer content. Comparison with thermally polymerised monoliths prepared using the same monomers, cross linker and porogens, had a much lower surface area, 6 m²/g compared to 24 m²/g for the photoinitiated monoliths. The physical and chemical characteristics of these porous polymer monoliths were measured by charge-coupled device camera, scanning electron microscopy, infra-red spectroscopy, BET surface area and titration experiments. In the case of scanning electron microscopy and charge-coupled device camera the successful anchoring and morphology of the polymer monolith was confirmed. The scanning electron microscopy analysis of the porous polymer monolith also showed that the change in morphology is very small and cannot be detected by analogy of the images. The BET surface area of these porous polymer monoliths ranged 12-24 m²/g. The carboxylic acid functionality in both polymer solutions and final polymer were confirmed by IR at 3500 and 1720 cm⁻¹ for νC=O and νOH respectively. The carboxylic acid group was further confirmed by titration of the bulk monolith and the pKa typical of a carboxylic group on solid surface at 4.3.

This methacrylic acid monolith was fabricated inside capillaries and used for in-line solid-phase extraction-capillary electrophoresis. The advantage of having the solid phase extraction within the separation device was exploited to enable in-capillary preconcentration of neurotransmitters via ion-exchange interactions. A new elution method, namely the use of an electroosmotic flow mobilised pH step gradient, was introduced to protonate the monolith and was shown to efficiently elute the analytes from the preconcentration monolith. Due to the discontinuous nature of the electrolyte system, analytes were simultaneously eluted and focused as the electrophoretically
mobilised pH step boundary traversed past the monolith, after which the analytes were separated according to their electrophoretic mobilities in the open section of the capillary. A fundamental study of the generation and implementation of the pH step was undertaken using dopamine and epinephrine as test analytes. Optimisation of the pH and concentration of binding electrolyte established best adsorption using 6 mM phosphate at pH 7, containing 12 mM sodium ion, which is above the pKa of the monolith but below the pKa of the analytes. Optimisation of the elution electrolyte yielded the best results when 12 mM phosphate pH 3, containing 12 mM sodium ion was used. Under these optimum conditions the sensitivity of simple neurotransmitters could be improved by over 500 times that of a normal hydrodynamic injection in CE. The analytical potential of the developed solid-phase extraction-capillary electrophoresis method was demonstrated with the detection of dopamine in a 3 times diluted urine sample from a healthy volunteer.

The selectivity of the solid-phase extraction device was also tested with analytes having differing pKa values. A series of weak bases, namely imidazole, benzylamine, lutidine and 3-phenylpropanamine, with pKₐ values ranging from 6 to 10 were selected to examine the ability of the solid-phase extraction monolith to selectively elute and concentrate these weak bases. This was demonstrated by performing pH selective extraction, in which a pH was selected at which only certain analytes were extracted, and pH selective removal, in which unwanted analytes were removed after extraction and prior to the separation. In addition, four different electrolytes containing phosphate, formate, acetate or citrate were tested. Acetate was found to give the narrowest peak width when measured at base, using benzylamine as analyte. After optimisation of the conditions necessary for maximum focusing 44 mM acetate pH 6 and 3 mM acetate pH 3 were found as the optimum providing a peak width of 1.5 s. Using the optimum conditions a 0.25 μg/ml test mixture of imidazole (pKₐ 6.99), lutidine (pKₐ 6.63) and 3-phenylpropanamine (pKₐ 10.28) was introduced at pH 6. pH selective removal was achieved by hydrodynamically introducing an acetate electrolyte at pH 9 containing 60% acetonitrile successfully removing both imidazole and lutidine, prior to applying the electroosmotic flow mobilised pH step and separation which successfully confirmed the presence of only phenylpropanamine. The versatility of this approach was
investigated further by performing pH selective extraction where the test mixture this time was loaded in the pH 9 electrolyte containing similar amount of organic modifier, successfully extracting only phenylpropanamine in the presence of imidazole and lutidine. The overall recoveries obtained using both this approaches were ranging 60% to 110%, indicating the applicability of this approaches for analytical purposes.

Finally, one of the main limitations of methacrylate-based monoliths, namely their low surface area, has been examined by templating the monoliths during polymerisation with 80 nm silica nanoparticles, which are subsequently removed by dissolving with sodium hydroxide. On varying the amount of silica nanoparticles in the polymer solution and etching time the overall capacity of the polymer monolith could be increased by 16 times when compared to the original monolith. When used for solid-phase extraction, this enabled higher loading times which translated to a reduction in the detection limits by up to 1900 times compared to a normal injection in CE. The potential of this increased capacity was demonstrated by direct loading of raw samples from biological (urine), environmental and food, without any pretreatment.