Pseudomonas aeruginosa
In Tasmania

Richard Bradbury

Submitted in fulfilment of the requirements of the degree of

Doctor of Philosophy

The University of Tasmania, September 2009
Dedicated to God and to my Father
This thesis contains no material which has been accepted for a degree or diploma by the University of Tasmania or any other institution, except by way of background information and duly acknowledged in the thesis. The work published in this thesis has all been performed by the author, except where due acknowledgement and credit is given. To the best of my knowledge and belief this thesis contains no material previously published or written by another person except where due acknowledgement is made in the text of the thesis, nor does it contain any material that infringes copyright.

Richard Bradbury

Date
This thesis may be made available for loan and limited copying in accordance with the Copyright act 1968.

Richard Bradbury

Date
Abstract

Pseudomonas aeruginosa is an organism commonly found in the environment, and one of the most common causes of infectious disease in humans. Infections caused by *P. aeruginosa* may present in many forms, reflective of the great versatility of this organism. *P. aeruginosa* infection occurs more commonly in patients with some form of immunocompromisation, and this is particularly significant in the nosocomial setting and as a cause of chronic infection in the cystic fibrosis (CF) lung.

Tasmania is an island state in the southernmost portion of Australia. It has a relatively small, isolated population with a greater balance of the population living in rural and regional areas than any other state in Australia. The state has a single tertiary care referral hospital in the capital city, Hobart and amongst the highest number of CF births per capita of anywhere in the world. Until 2003, CF patients in Tasmania did not attend any centralised clinics, and had little social or other contact with each other. These factors provided a unique opportunity to study the epidemiology of *P. aeruginosa* infections in a whole population sample.

In addition, a large number (n=184) of *P. aeruginosa* isolates from diverse clinical and environmental sources, including isolates from adult CF patients, were obtained from both within the major tertiary referral hospital in Tasmania and the wider community. Antimicrobial resistance testing was performed on all isolates by four separate methods and the results of these compared. A sub group of CF and hospital environment strains appeared to present with an increased propensity towards antimicrobial resistance and frank multi-drug resistance. Molecular epidemiological analysis of the CF strains revealed a single genotype of *P. aeruginosa* to be infecting over a quarter of the adult CF patients in the state. Isolates of the genotype concerned showed a greater propensity towards multi-drug resistance than any other cohort of *P. aeruginosa* strains included in the study, and were shown to
cause poorer clinical outcomes in infected patients. The strain was determined to be a new CF clonal complex, described as Australian Epidemic Strain 3 (AES3). The source of this strain appears to a CF summer camp which occurred more than ten years prior to this study. A further common genotype (infecting 11% of adult Tasmanian CF patients) was identified. This strain was described as the “Tasmanian CF cluster strain”.

Further molecular epidemiological analysis of P. aeruginosa strains from infected patients within the major tertiary referral hospital and the wider community, as well as environmental isolates from these and other sites showed that the AES3 and Tasmanian CF cluster strains are not common in non-CF patients, and do not have an obvious environmental source either in the hospital or the wider community.

A survey of the virulence factor genes associated with all isolates in this study was performed. This represented one of the most comprehensive studies of virulence genes over a wide range of P. aeruginosa isolates ever performed. The study found no specific difference in the prevalence of these genes between AES3 strains and other CF strains. CF strains were less likely to carry the low prevalence, horizontally transferred, exoU virulence gene. Conversely, isolates recovered from environmental sampling in the hospital intensive care and neurosurgical wards showed an increased propensity towards both antimicrobial resistance and exoU+ genotype.

A selected group of CF, non-CF clinical and environmental isolates were subjected to an assay of global cellular virulence in a novel modification of the Dictyostelium discoideum eukaryotic virulence assay employing two
D. discoideum mutants. The majority of clinical CF isolates supported the growth of D. discoideum. D. discoideum was unable to grow on any other isolates of P. aeruginosa, except one environmental isolate which supported the growth of only one of the two D. discoideum mutants tested. No difference in the capacity of clonal complex strains and unique CF strains to support D. discoideum growth and development was identified. Variations in the capacity of D. discoideum to develop beyond the amoeboid stage were noted within the CF isolates. No significant differences were noted between assays performed in the presence or absence of azithromycin, ceftazidime or tobramycin.

This was the first study of which we are aware to demonstrate the capacity of wild-type CF P. aeruginosa strains to support the growth of D. discoideum, and has provided significant findings with regard to “whole cell” virulence of this organism, and its down-regulation in the CF lung. Differences in the degree of development of D. discoideum on CF isolates may also lead to new insights into the mechanisms of virulence in such strains in the human disease setting.

The work presented in this thesis has found new information regarding the epidemiology of P. aeruginosa infections. It has also provided new information regarding the distribution of the exoU gene in hospital environmental isolates, and the association of this genotype with hospital intensive therapy wards. Finally, in describing a novel modification of the D. discoideum virulence model, and applying this model to multiple clinical and environmental isolates of P. aeruginosa, this work has added to the body of scientific knowledge regarding the expression of virulence by P. aeruginosa isolates from different clinical and environmental sources.
Acknowledgements

I would like to extend my warm thanks and appreciation for the assistance and support provided by my supervisors, Dr. Alan Champion, Dr. David Reid and Associate Professor Timothy Inglis. I should also like to thank Dr. Louise Roddam, Dr. Silvana Bettiol and Mr. Adam Merritt for their support during the course of the work published herein. My thanks also go to Assoc. Prof. Leigh Blizzard for his assistance and advice in statistical analysis.

I would like to thank the staff of the Department of Molecular Medicine at the Royal Hobart Hospital, who graciously allowed me to use much of their time, equipment and reagents in the preparation of this work. Specifically, I would like to thank Dr. Janet Williamson, who was always available and willing to assist with advice and moral support.

Finally, I would like to thank my colleagues and friends, the staff of the Department of Microbiology at the Royal Hobart Hospital, as well as the staff of the Tasmanian Public Health Laboratory for their assistance in providing many of the bacterial isolates studied in this work.

Many people have provided a great deal of support and assistance to me during the course of this work, and I unfortunately cannot hope to mention all of them in this short acknowledgement. I am honoured to have had the opportunity to work with them.
Refereed Manuscripts

Bradbury, R.S., A.C. Champion and D.W. Reid, 2008 “*Pseudomonas aeruginosa* Epidemiology in a Tertiary Referral Teaching Hospital”, *The Journal of Hospital Infection*, vol. 73, pg 151-156.

Conference Abstracts

Bradbury, R., A. Champion, 2006 “Investigations into the Tasmanian Clonal Strain of Pseudomonas aeruginosa”, Proffered Paper. AIMS/AACB National Scientific Meeting, Hobart

Bradbury, R., D. Reid, A. Champion, 2005 “Molecular Epidemiology of Pseudomonas aeruginosa Infections in Tasmania”, Proffered Paper. Australian Society for Microbiology National Scientific Meeting, Canberra (PP10.1)

Bradbury, R., D. Reid, A. Champion, 2004 “Genome Diversity of Pseudomonas aeruginosa Isolates From Tasmanian Cystic Fibrosis Patients”, Proffered Paper. Australian Society for Microbiology National Scientific Meeting, Sydney (PP32.6)
TABLE OF CONTENTS

DEDICATION ... ii
DECLARATION .. iii
COPYRIGHT DECLARATION .. iv
ABSTRACT ... v
ACKNOWLEDGEMENTS ... viii
REFEREED MANUSCRIPTS ... ix
CONFERENCE ABSTRACTS ... x
TABLE OF CONTENTS ... xi
LIST OF CHAPTERS ... xii
LIST OF TABLES ... xxiii
LIST OF FIGURES ... xxviii
LIST OF ABBREVIATIONS .. xxxi
LIST OF CHAPTERS

CHAPTER ONE

Review of Literature... 1

1.1 Introduction.. 2

1.2 General characteristics.. 2

1.3 Environmental range... 3

1.4 Infection with Pseudomonas aeruginosa... 4

1.4.1 Immunocompetent patients in the community setting......................... 4

1.4.2 Immunocompromised patients in the community setting................. 5

1.4.3 Nosocomial infections... 7

1.4.3.1 Molecular epidemiology... 8

1.4.4 Infection in cystic fibrosis patients... 9

1.4.4.1 Demographics... 9

1.4.4.2 Epidemiology in respect to cystic fibrosis.................................. 10

1.4.4.3 P. aeruginosa clonal complexes in CF patients......................... 11

1.5 Laboratory identification... 17

1.6 Phenotypic and genomic variability.. 18

1.7 Pseudomonas aeruginosa in biofilm... 19

1.8 Quorum Sensing.. 19

1.8.1 Azithromycin as a disruptor of quorum sensing............................... 20

1.9 Antimicrobial resistance.. 22

1.9.1 Intrinsic resistance mechanisms... 22

1.9.1.1 The chromosomal β-lactamases.. 22
1.9.1.2 Active efflux pumps .. 23
1.9.1.3 Membrane changes .. 24
1.9.1.4 Mutations in type II topoisomerase 25
1.9.1.5 Aminoglycoside modifying enzymes 26

1.9.2 Mobile β-lactamases .. 26
1.9.2.1 Narrow spectrum β-lactamases 27
1.9.2.2 Extended spectrum β-lactamases 27
1.9.2.3 Mobile metallo-β-lactamases 28

1.9.3 Multi-drug resistance .. 30
1.9.3.1 Hypermutation and multi-drug resistance 30

1.10 Virulence factors of Pseudomonas aeruginosa 33

1.10.1 Global regulation of virulence 34
1.10.2 Cell surface virulence factors 35
1.10.3 Secreted virulence factors .. 37
1.10.4 Hyperactive efflux pumps ... 37
1.10.5 Phenazines, pyocyanin and other pigments 37
1.10.6 Cyanide ... 39
1.10.7 Rhamnolipid and cytotoxic lectins 39
1.10.8 The type I secretion system .. 40
1.10.8.1 Alkaline protease ... 40
1.10.9 The type II secretion system 41
1.10.9.1 Elastolytic Enzymes .. 41
1.10.9.2 Exotoxin A ... 42
1.10.9.3 Phospholipase C and lipases 42
1.10.10 The type III secretion system ... 43
 1.10.10.1 ExoT and ExoS ... 45
 1.10.10.2 ExoY and ExoU .. 46
 1.10.10.2.1 Fluoroquinolone resistance and exoU 47
 1.10.10.3 The type III secretion as a dynamic system 48
 1.10.10.4 Action of type III secretion system effector enzymes in combination ... 48
 1.10.10.5 ExsA and regulation of the type III secretion System .. 49
 1.10.11 Putative virulence factors ... 49
 1.10.12 Temporal changes in virulence 51
 1.10.13 Eukaryotic virulence models 52

1.11 Geographic and demographic setting of study 56

1.12 Conclusion .. 58

CHAPTER TWO

Materials .. 59

2.1 Control Strains .. 60

2.2 Chemicals, Materials and Suppliers 60

2.3 Solutions ... 65

 2.3.1 General solutions ... 67
 2.3.2 Pulsed field gel electrophoresis solutions 67
 2.3.3 DNA hybridisation solutions 69
 2.3.4 Dictyostelium discoideum culture solutions 71
2.4 Culture Media

2.4.1 General culture and storage media

2.4.2 Dictyostelium discoideum culture media

CHAPTER THREE

Methods

3.1 Bacterial Isolation from CF Sputum by University of Tasmania

3.2 Bacterial Isolation of Royal Hobart Hospital Clinical Isolates

3.3 Bacterial Isolation from Hospital Environment

3.4 Bacterial Isolation from Community Environment

3.5 Isolate Storage

3.6 Gram Stain Reaction

3.7 Oxidase Testing

3.8 C390 Reaction

3.9 Vitek Identification of Bacterial Species

3.10 API 20NE Identification of Bacterial Species

3.11 CLSI Antimicrobial Susceptibility Testing

3.12 DNA Extraction

3.13 Pseudomonas aeruginosa Specific PCR

3.14 Random Amplified Polymorphic DNA PCR

3.15 Pulsed Field Gel Electrophoresis

3.16 Dendrogram of Isolate Relatedness by RAPD PCR

3.17 Virulence factor PCRs

3.17.1 apr, lasB, phzl, phzII, phzH, phzM, phzS, exoS and exoT
3.17.2 exoY and exoU ... 89

3.18 DNA-DNA Hybridisation Blots ... 90

3.19 Purification of DNA from Agarose Gel 92

3.20 Determination of urease production 93

3.21 Dictyostelium discoideum Virulence Assay 96

3.21.1 Dictyostelium discoideum continuous culture 94

3.21.2 Preparation of virulence assay discs 94

3.21.2.1 Ethanol shock treatment .. 95

3.21.2.2 Heat treatment ... 95

3.21.2.3 Desiccation ... 95

3.21.3 Dictyostelium discoideum virulence assay 96

3.22 Statistical Methods .. 97

CHAPTER FOUR

Source and Identification of Isolates ... 98

4.1 Introduction .. 99

4.2 Methods .. 100

4.2.1 Clinical and community environment isolates 100

4.2.2 Hospital environment isolates 100

4.2.3 Confirmation of identification by PCR 101

4.3 Results .. 101

4.3.1 Sample collection ... 101

4.3.2 Increased recovery of Pseudomonas aeruginosa in hospital intensive therapy units ... 103
4.3.3 Mucoidy ... 103
4.3.4 Multiple isolates from CF patients 104
4.3.5 Multiple isolates from non-CF patients 104
4.3.6 Isolate identification ... 105

4.4 Discussion ... 111
4.4.1 Distribution of Pseudomonas aeruginosa isolates 111
4.4.2 Mucoid morphology ... 113

4.5 Conclusion .. 114

CHAPTER FIVE
Antimicrobial Resistance .. 115

5.1 Introduction .. 116
5.2 Methods ... 116
5.3 Results ... 117
5.4 Discussion .. 121
5.4.1 Distribution of antimicrobial resistance 121
5.5 Conclusion .. 122

CHAPTER SIX
Molecular Epidemiology of Pseudomonas aeruginosa Infections from Cystic Fibrosis Patients: A Whole Population Study 124

6.1 Introduction .. 125
6.2 Methods ... 126
6.1.1 Isolate source .. 126
CHAPTER SEVEN

Molecular Epidemiology of *Pseudomonas aeruginosa* in the Hospitalised Population and the Wider Community

7.1 *Introduction* ... 143

7.2 *Methods* ... 145

7.3 *Results* ... 147

7.3.1 Genotypic analysis ... 147

7.3.2 Phenotypic properties ... 148

7.4 *Discussion* ... 153

7.4.1 Cystic fibrosis isolates .. 153

7.4.2 Absence of cross-infection ... 153
CHAPTER EIGHT

Virulence gene distribution

8.1 Introduction

8.2 Methods

8.3 Results

8.3.1 \textit{exoU} PCR primer design and validation

8.3.2 Virulence Factor PCR Results

8.4 Discussion

8.4.1 Virulence factor genes are highly conserved

8.4.2 \textit{exoU} and \textit{exoS} are not mutually exclusive

8.4.3 Prevalence of \textit{exoU}

8.5 Conclusion

CHAPTER NINE

Whole Cell Virulence in a Novel Modification of the \textit{Dictyostelium discoideum} Eukaryotic Cell Model

9.1 Introduction

9.2 Methods

9.2.1 Statistical analysis

9.3 Results

9.3.1 Removal of \textit{Klebsiella aerogenes} contamination

9.3.2 \textit{Dictyostelium discoideum} virulence testing results
9.3.3 Growth and development of Dictyostelium discoideum

9.3.4 Urease, antimicrobial resistance and virulence gene scores

9.3.5 Effects of antibiotics on virulence

9.4 Discussion

9.4.1 The modified Dictyostelium discoideum virulence model

9.4.2 Virulence between Dictyostelium discoideum strains is comparable

9.4.3 Cystic fibrosis isolates are less virulent in a Dictyostelium discoideum model

9.4.4 Virulence of AES3 in the Dictyostelium discoideum model

9.4.5 Environmental isolates may support the growth of Dictyostelium discoideum

9.4.6 Urease production as a marker for virulence

9.4.7 Antimicrobial resistance and virulence in Dictyostelium discoideum

9.4.8 Genotype and virulence in Dictyostelium discoideum

9.5 Conclusion

CHAPTER TEN

Concluding Discussion

10.1 Introduction

10.2 The Need to Test Hypotheses in Multiple Clinical Isolates From Diverse Sources

10.3 Evolution of Highly Virulent, Antimicrobial Resistant Isolates Within the Hospital Environment
10.4 The Role of Virulence, Immunogenicity and Hypermutability in Cystic Fibrosis Epidemiology ... 219

10.4.1 Decreased prevalence of exoU in cystic fibrosis isolates 220

10.4.2 Mutual exclusivity of exoU and exoS .. 220

10.4.3 Decreased of virulence of cystic fibrosis isolates in the

D. discoideum model ... 221

10.4.4 A potential role for hypermutability in cystic fibrosis clonal

complex infections ... 221

10.5 Limitations of the Study .. 222

10.5.1 Population size, sample distribution, collection methods and

Identification ... 222

10.5.2 Determination of antibiogram and antimicrobial susceptibility .. 224

10.5.3 Determination of genotype .. 225

10.5.4 Adverse clinical impact of AES3 on CF patients 226

10.5.5 Determination of virulence .. 227

10.6 Further Investigations ... 228

10.6 Conclusion ... 229

APPENDICES ... 230

Appendix A
Antimicrobial Resistance Testing Methods Reference Values 231

Appendix B
PCR Primers used in this study .. 232

Appendix C
Annealing Temperatures for DNA-DNA Hybridisation Assays 233
Appendix D
Statistical Analysis of Virulence Factor Gene Distribution.......................... 234

REFERENCES... 245
List of References.. 246