HISTOLOGICAL AND HISTOCHEMICAL OBSERVATIONS OF THE CEPHALIC NEUROSECRETORY SYSTEM OF THE CRAB, _PARAGRAPSUS GAIMARDII_ (H. MILNE EDWARDS)

By
P. S. LAKE,
Department of Zoology, University of Tasmania
(With full plates of five text figures)

ABSTRACT
Anatomical, cytological and histochemical features of the neurosecretory system of the crab, _Paragrapus gaimardii_ are described. In the brain and the commissural ganglia, three types of neurosecretory cells are distinguished. The distribution of these cells in the brain and the commissural ganglia is described. In the eyestalk, four types of neurosecretory cells are identified and the distribution of these cells is described. The neurosecretory cells of the brain, the commissural ganglia, and of the eyestalks are all paraldehyde fuchsin positive (PF-positive). Their staining properties with the chrome-haematoxylin phloxine technique are described. The presence of allochthonous cells in the sinus gland is revealed. The allochthonous neuroglial cells of the brain, especially those of the protocerebrum, do appear to be active gliosecretory cells. The neurosecretory material of the cephalic neurosecretory system of _P. gaimardii_ is proteinaceous with disulphide groups being markedly present.

INTRODUCTION
The neurosecretory cells and organs of the eyestalk of crabs have attracted considerable attention from both histologists and physiologists. Studies of the structure and cytology of the neurosecretory system of the crab eyestalk have been made by Hanström (1937, 1947), Enami (1951), Bliss and Welsh (1952), Bliss, Durand and Welsh (1954), Potter (1954, 1958), Miyawaki (1956a, c, 1960), Matsumoto (1958), Valente (1959) and Szudárky (1963). Similarly, a number of studies have been made of the neurosecretory cells of the cerebral ganglion (Enami 1951, Bliss and Welsh 1952, Bliss, Durand and Welsh 1954, Parameswaran 1956, Inoue 1957, Matsumoto 1958, Miyawaki 1960, Szudárky 1963 and Baid, Hafidh and Dabagh 1967). Histochemical observations on the nature of the neurosecretory material in crabs have been made by Gabe (1952), Miyawaki (1956b, c, 1960) and Rehn (1959).

In view of the importance of neurosecretion in controlling many major aspects of the physiology of crabs and in view of the lack of clear correlations in the types of neurosecretory cell types so far described in various species of crabs, the cerebral and optic ganglia of _Paragrapus gaimardii_ were examined histologically as a preliminary step to further studies of the neurosecretory system.

MATERIALS AND METHODS
Mature male or female _P. gaimardii_, in the stage of Internoult (C3-C4 of Drach 1939) and with a carapace width ranging from 15 to 36 mms. were used in this study. The cerebral ganglion and the optic ganglion were dissected out in the fixative. In the case of the eyestalks, prior to their removal, fixative was injected into the eyestalk from the proximal end, using a hypodermic syringe with a No. 26 needle. The majority of ganglia were fixed in Masson's Bouin (Foot 1933) or in 4% Formalin (Baker 1958). The tissues were dehydrated in ethanol, cleared in methyl benzoate, often with 1% celloidin added, and embedded in Paraplast (M.P. 56°C). Serial sections, 7 or 8 μ thick, were cut and mounted on glass slides.

Fig. 1.—Diagram of the dorsal side of the brain of _P. gaimardii_ indicating the location and the distribution of the neurosecretory cells. Opt. N., optic nerve; Ocm. N., oculomotor nerve; Ant. I. N., first antennary nerve; Ant. II. N., second antennary nerve; Tel. N., tegumentary nerve; †, large monopolar neurosecretory cells; ●, medium monopolar neurosecretory cells; ○, small monopolar neurosecretory cells. Magnification x approximately 20.
Complete series of serial sections of either the brain or the eyestalks were stained with one of the following procedures:

(a) Paraldehyde fuchsin (PF). (Ewen 1962).
(b) Chrome-haematoxylin phloxine. (CHP). (Bargmann 1949).
(c) Mallory’s Triple. (Hubschman 1962).
(d) Azan. (Hubschman 1962).

The histochemical tests carried out on serial sections of either brain or optic ganglia included:

(a) the alloxan-Schiff technique for protein-bound amino groups after Yasuma and Ichikawa (1953).
(b) the performic acid-alcian blue technique for disulphide groups after Adams and Sloper (1956).
(c) the permanganate oxidation-alcian blue technique for disulphide groups after Arvy and Gabe (1962).
(d) the dihydroxy-dinaphthyl-disulphide (DDD) technique for sulphhydryl groups after Barnet and Seligman (1952, 1954).
(e) the periodic acid-Schiff (PAS) technique after Hotchkiss and McManus (cf. Barka and Anderson 1963) for 1,2-glycol groups and a variety of other materials. Complete series of serial sections were treated with either (1) the standard method for PAS-reactive groups or (2) diastase digestion (2 hours at 26°C) followed by the standard method for the detection of glycogen.
(f) the alcian yellow-alcian blue technique for strongly acidic disulphide groups and weakly acidic glycol groups after Van De Kamer (1967).

The photographs were taken on a Wild Photoautomat fitted to a Wild M-20 microscope using either Kodak Plus-X Pan film or Ilford Pan F film.

RESULTS

In the brain and the commissural ganglia, there are three basic types of neurosecretory cells. The first type of cells are the large monopolar cells (Plates 1 and 2). These cells are oval in shape and have a mean diameter of 59.76 ± 8.60 µ. The cytoplasm of these cells is finely granular and shows an affinity for the Light Green component of the PF counterstain. In the cytoplasm, there are fine, purple PF-positive granules which reach their greatest concentration around the nucleus. In some cells, especially in the protocerebrum, vacuoles up to 16 µ across may occur in the outer part of the cytoplasm. These cells do not, in general, stain intensely with the PF technique but do possess distinct granules, suggestive of neurosecretory activity. The nuclei are oval, with a mean diameter of 21.16 ± 3.30 µ. With the PF technique, the nuclei are lightly stained with a greenish tinge. Only one nucleolus appears to occur per nucleus. The nucleoli are large, up to 5 µ in diameter and are Orange G + positive. The reactions of these cells to the three other histochemical stains are given in Table 1.

The medium neurosecretory cells of the brain are the most common type of neurosecretory cell in the brain (Plate 1). These cells are monopolar and oval to elliptical in outline. They have a mean diameter of 36.96 ± 14.46 µ. The oval nuclei have a mean diameter of 16.27 ± 2.81 µ. There may be either one or two nucleoli. The cytoplasm of these cells is often coarsely granular and may have a great density of coarse, purple neurosecretory granules, notably concentrated around the nucleus. The nuclei have an affinity for Light Green and the nucleoli are stained orange with the PF technique. Small vacuoles up to 7 µ across are sometimes observed near the periphery of these cells. The reactions of these cells to the other histochemical techniques are given in Table 1.

The small neurosecretory cells are monopolar and are generally oval in shape. They have a mean diameter of 23.75 ± 2.74 µ and the oval nuclei have a diameter of 13.79 ± 1.50 µ. With the PF technique, the ground substance of the cytoplasm is stained a pale green, and within this, there occur distinct purple secretory granules.

Table 1.

Reactions of the neurosecretory cells of the brain and the commissural ganglia to the Chrome-haematoxylin phloxine technique (CHP), the Azan technique and Mallory’s Triple technique.

<table>
<thead>
<tr>
<th>Cells</th>
<th>Technique</th>
<th>Cytoplasm</th>
<th>Neurosecretory material</th>
<th>Nucleus</th>
<th>Nucleoli</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large Cells</td>
<td>CHP</td>
<td>pale red</td>
<td>purple</td>
<td>pink</td>
<td>red</td>
</tr>
<tr>
<td></td>
<td>Azan</td>
<td>pale blue</td>
<td>grey-blue</td>
<td>pale red</td>
<td>red</td>
</tr>
<tr>
<td></td>
<td>Mallory’s Triple</td>
<td>reddish-purple</td>
<td>purple</td>
<td>pale purple</td>
<td>red</td>
</tr>
<tr>
<td>Medium cells</td>
<td>CHP</td>
<td>clear pink</td>
<td>purple to black</td>
<td>orange</td>
<td>red</td>
</tr>
<tr>
<td></td>
<td>Azan</td>
<td>blue</td>
<td>grey-blue</td>
<td>brown</td>
<td>brick red</td>
</tr>
<tr>
<td></td>
<td>Mallory’s Triple</td>
<td>pink-purple</td>
<td>purple</td>
<td>pale red</td>
<td>red</td>
</tr>
<tr>
<td>Small cells</td>
<td>CHP</td>
<td>red</td>
<td>purple-black</td>
<td>pale red</td>
<td>red</td>
</tr>
<tr>
<td></td>
<td>Azan</td>
<td>purple</td>
<td>reddish-purple</td>
<td>pale purple</td>
<td>brick red</td>
</tr>
<tr>
<td></td>
<td>Mallory’s Triple</td>
<td>blue to reddish-purple</td>
<td>purple</td>
<td>pale purple</td>
<td>red</td>
</tr>
</tbody>
</table>
Fig. 2.—Diagram of the ventral side of the brain of *P. puimarti*, indicating the location and distribution of the neurosecretory cells. Opt. N., optic nerve; Ant. I. N., First antennary nerve; Ant. II. N., Second antennary nerve; •, large monopolar neurosecretory cells; ○, medium monopolar neurosecretory cells. Magnification x approximately 20.

A few small vacuoles, up to 4 μ across are sometimes observed in these cells. With the PF technique, the nuclei stain a pale green, while the nucleoli are red. For reactions of these cells to the other histological stains see Table 1.

Some neuroglial cells in the brain appear to be active secretory cells (Plate 3). The secretion appears as clustered deep purple granules, when stained with the PF technique. The secretory glial cells are predominantly located in and around the median group of protocerebral neurosecretory cells (Group 1), though some are also located in and near Group 4 of the brain. The pathway(s) by which such secretion is discharged is unknown, though there are indications that secretory granules from the protocerebral group of neuroglial cells are transported along the optic nerve. The neuroglial cells have oval nuclei which stain a pale blue with the PF technique.

The principal region of neurosecretory cells on the dorsal side of the brain is the median group of cells in the protocerebrum (Group 1): (Figure 1). This region contains a considerable number of large neurosecretory cells. The regions of neurosecretory cells around the olfactory lobes of the brain, although continuous, can be divided into two groups, the anterior group (Group 2) and the posterior group (Group 3) for each side of the dorsal aspect of the brain.

The ventral aspect of the brain is notably richer in neurosecretory cells (Figure 2). Anteriorly, neurosecretory cells are present in the continuation to the ventral surface of the median protocerebral group of cells (Group 1). The most prominent area for the localization of neurosecretory cells on the ventral side of the brain is the central group (Group 4). This central group extends posteriorly to where the circum-oesophageal connectives leave the brain. Anteriorly and posteriorly of the base of the second antennal nerve, a small region of neurosecretory cells (Group 5) is located. The tritocerebral commissural ganglia are situated on the circum-oesophageal connectives. They occur as ganglionic swellings anterior to the tritocerebral commissures. In the ganglia, both medium and small neurosecretory cells are found (Figure 3). The greatest concentration of these cells occurs on the dorso-lateral margins of the anterior sides of the ganglia.

Neurosecretory Cells of the Eyestalk

In the eyestalk, four types of neurosecretory cells are identified. The large monopolar neurosecretory cells of the eyestalk are oval in outline and have a mean diameter of 45.15 ± 4.90 μ (Plate 4). The cytoplasm of these cells varies in texture. In many of these cells, the cytoplasm is granular with fine purple secretory granules in the cytoplasm and in such cases the granules are not so markedly concentrated around the nucleus (Plate 4). Frequently in such cells, vacuoles are present near the peripheries of the cells. Like the large monopolar cells of the brain, the ground substance of the cytoplasm of the eyestalk cells, shows an affinity for Light Green. The nuclei are oval and have a mean diameter of 45.15 ± 4.90 μ.}

Fig. 3.—Dorsal view of a tritocerebral commissural ganglion, showing the position of the neurosecretory cells. •, medium monopolar neurosecretory cells; ○, small monopolar neurosecretory cells. Magnification x approximately 120.
Reactions of the neurosecretory cells of the eyestalks to the Chrome-haematoxylin phloxine technique (CHP), the Azan technique and Mallory's Triple Technique.

<table>
<thead>
<tr>
<th>Cells</th>
<th>Technique</th>
<th>Cytoplasm</th>
<th>Neurosecretory Material</th>
<th>Nucleus</th>
<th>Nucleoli</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large cells</td>
<td>CHP</td>
<td>pink</td>
<td>purple</td>
<td>pale red</td>
<td>red</td>
</tr>
<tr>
<td></td>
<td>Azan</td>
<td>blue</td>
<td>purple</td>
<td>brick red</td>
<td>pale red</td>
</tr>
<tr>
<td></td>
<td>Mallory's Triple</td>
<td>maroon</td>
<td>purple</td>
<td>red-maronoon</td>
<td>red</td>
</tr>
<tr>
<td>Medium oval cells</td>
<td>CHP</td>
<td>pale pink</td>
<td>purple</td>
<td>pale red</td>
<td>red</td>
</tr>
<tr>
<td></td>
<td>Azan</td>
<td>grey</td>
<td>blue</td>
<td>brick red</td>
<td>red</td>
</tr>
<tr>
<td></td>
<td>Mallory's Triple</td>
<td>maroon</td>
<td>purple</td>
<td>red</td>
<td>red</td>
</tr>
<tr>
<td>Medium elongated cells</td>
<td>CHP</td>
<td>pink</td>
<td>purple</td>
<td>red</td>
<td>red</td>
</tr>
<tr>
<td></td>
<td>Azan</td>
<td>blue-grey</td>
<td>blue-purple</td>
<td>red-maronoon</td>
<td>red</td>
</tr>
<tr>
<td></td>
<td>Mallory's Triple</td>
<td>maroon</td>
<td>purple</td>
<td>red</td>
<td>red</td>
</tr>
<tr>
<td>Small cells</td>
<td>CHP</td>
<td>pale pink</td>
<td>purple-black</td>
<td>red</td>
<td>deep red</td>
</tr>
<tr>
<td></td>
<td>Azan</td>
<td>blue</td>
<td>blue-purple</td>
<td>magenta</td>
<td>pink</td>
</tr>
<tr>
<td></td>
<td>Mallory's Triple</td>
<td>pale purple</td>
<td>purple</td>
<td>deep red</td>
<td>red</td>
</tr>
</tbody>
</table>

The sinus gland is a flattened ovoid in shape with the flattening occurring in the dorso-ventral plane. In transverse cross section, the sinus gland is a flattened ellipse in shape. The central part of the gland is occupied by the blood sinus. The swollen axonal endings containing the neurosecretory material are separated from the blood sinus by a thin basement membrane, which is stained dark green with the PF technique. In mature animals, the sinus gland is about 300 µ long, while in transverse section it is about 120 µ wide.

The size of the granules present in the sinus gland varies considerably with a consistent gradient from the external to the internal surfaces of the organ. The larger granules, in the outer part of the gland, are approximately 6 to 7 µ in diameter and are stained a deep purple with the PF technique. Smaller purple granules, 0.5 to 1 µ in diameter, are located near the internal surfaces of the gland. Close to the internal surfaces of the gland, the secretory granules are very fine. There is a difference in the staining properties of the secretory material between the outer and the inner parts of the gland. The large granules stain a deep purple with the PF technique. Smaller purple granules, are stained greenish-blue to a deep green. Near the basement membrane homogeneous, light green secretory material is also found. The changes in the staining properties of the secretory material in the sinus gland may indicate changes in the chemical nature of the neurosecretory material prior to or at the site of release. When stained with the CHP technique, large lilac globules are observed. Scattered purple globules are also present close to the internal surfaces of the gland, while very strongly phloxinophilic granules are located in the outer parts of the gland.

Three types of secretory materials were observed in the sinus gland, when the Mallory's Triple staining procedure was used. The predominant type of secretory
Reactions of the secretory materials of the neurosecretory cells of the brain and the eyestalks and of the sinus gland to the various histochemical tests.

<table>
<thead>
<tr>
<th>Test</th>
<th>Brain</th>
<th></th>
<th></th>
<th>Eyestalks</th>
<th>Medium oval cells</th>
<th>Medium elongated cells</th>
<th>Sinus gland</th>
<th>Region A</th>
<th>Region B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Large cells</td>
<td>Medium cells</td>
<td>Small cells</td>
<td>Large cells</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alloxan-Schiff</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>++++</td>
<td>++</td>
</tr>
<tr>
<td>PFAAB</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POAB</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>DDD</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>±</td>
<td>±</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>PAS</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>±</td>
<td>±</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>PAS-diastase</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>±</td>
<td>±</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Alcian yellow</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alcian Blue</td>
<td>Blue</td>
<td>Blue</td>
<td>Pale blue</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
<td>Pale blue</td>
<td>Green-yellow</td>
<td>Green-blue</td>
</tr>
</tbody>
</table>
The cells were largely confined to the outer half or so of the sinus gland and reached their greatest density near the outer surface of the gland. The most common type of nucleus encountered was oval in shape and had a diameter of approximately 8 μ. Close to the outer surface of the sinus gland a second type of nucleus was encountered. These nuclei were also small but were elongated in shape. The oval nuclei may be the nuclei of neuroglial cells, while the elongated nuclei may be the nuclei of connective tissue cells associated with the connective tissue sheath of the sinus gland. The neuroglial cells of the sinus gland do not appear to be active secretory components as observed by Adiyodi (1969).

The sinus gland lies on the dorsal surface of the optic ganglia, opposite the Medulla Interna (Figure 4). A group of neurosecretory cells is found in the Medulla Externa occupying the dorsal and ventral posterior side of this region, near the junction of the Medulla Externa and the Medulla Interna (Figures 4 and 5). In the Medulla Interna, near the sinus gland, on the dorsal surface there is an extension of neurosecretory cells from Group E4 of the Medulla Terminalis, while on
the ventral posterior surface of the Medulla Interna, Group E4 also extends from the Medulla Terminalis. On the ventral anterior surface of the Medulla Interna, neurosecretory cells extend from Group E2 of the Medulla Terminalis.

Three groups of neurosecretory cells are found in the Medulla Terminalis, making this the most notable region for neurosecretory cells in the eyestalk. On the ventral anterior surface of the Medulla Terminalis, Group E2 is located, while on the posterior ventral surface, Group E4 extends back proximally to join with Group E1. Group E1 is located on the proximal margins of the Medulla Terminalis and constitutes the Medulla Terminalis Ganglionic X-organ.

Histochemical Observations of the Neurosecretory cells of the Brain and the Eyestalk and of the Sinus Gland.

In this series of observations, the sinus gland is divided into two regions. Region A constitutes that region containing rather large granules, 6-7 μ in diameter, while Region B constitutes that region of the sinus gland adjoining the basement membrane and containing the fine secretory granules. The results of the reactions in the neurosecretory cells are for the secretory material only. The results of the tests are given in Table 3.

Alloxan-Schiff. This test for protein-bound amines recommended by Barka and Anderson (1963) as a general protein staining technique. Proteins are stained from pink to red. In general, the secretory material of the neurosecretory cells of the brain and the eyestalks was only mildly stained, while that of the sinus gland was stained a deep red indicating the presence of significant amounts of protein.

Performic acid Alcian Blue and Permanganate-oxidation Alcian Blue.

The results of both of these tests for sulphhydryl groups are basically similar. As in the alloxan-Schiff test, the sinus gland proved to be the most active neurosecretory region.

DDD Reaction. This reaction indicates the presence of sulphhydryl groups. Using Fast Blue B as the diazonium salt, the presence of high concentrations of -SH groups is indicated by a violet-blue or blue colour. However, in this study, regions of high reactivity were indicated only by a red colour.

Periodic acid-Schiff. This test demonstrates the presence of carbohydrates and a number of related substances, such as some neutral mucopolysaccharides, some glycolipids and glycoproteins. Used in conjunction with diastase digestion pre-treatment, the PAS technique may demonstrate the presence of glycogen. From the results of the PAS and the PAS-diastase tests, it appears that the reactivity of granular material in the cells and in the sinus gland is largely due to the presence of glycogen.

Alcian Yellow-Alcian Blue. This test distinguishes between weakly acidic glycol groups and the strongly acidic S-S groups in proteins. The weakly acidic glycol groups in neurosecretory material are stained blue and the strongly acidic S-S groups are stained yellow. The neurosecretory material in *P. gaimardii* in the cell perikarya contains a predominance of weakly acidic glycol groups while that in the sinus gland contains a predominance of strongly acidic S-S groups.

DISCUSSION

In the brain and tritocerebral commissures of the crab, *Paragrapus gaimardii*, three types of neurosecretory cells could be distinguished. The number of types of neurosecretory cells detected in the brain of _brachyurans_ investigated to date, varies from one to three. Only one distinct type of neurosecretory cell was reported by Szudardky (1963), while two types have been reported by Enami (1951), Parameswaran (1956), Miyawaki (1960) and Baid, Hafidh and Dabagh (1967). Three types of cells have been reported by Inoue (1957) and Matsumoto (1958).

The large monopolar cells of the brain of *P. gaimardii* may correspond to the α neurosecretory cells of Enami (1951), the A cells of Parameswaran (1956), Inoue (1957) and of Matsumoto (1958), the median cells of Miyawaki (1960) and the B3 cells of Szudardky (1963). The medium cells of the brain of *P. gaimardii* may correspond with the β cells of Enami (1951), the B cells of Parameswaran (1956), Inoue (1957) and Matsumoto (1958) and the B2 cells of Szudardky (1963). The small cells of the brain of *P. gaimardii* may similarly correspond to the γ neurosecretory cells of Enami (1951), the D cells of Inoue (1957), the E cells of Matsumoto (1958), the small cells of Miyawaki (1960) and of Baid, Hafidh and Dabagh (1967).

The regions where neurosecretory cells occur in the brain are basically similar to those reported for *Sesarma dehaani* by Enami (1951), for *Pachygrapsus crassipes* by Inoue (1957) for *Paratelphusa hydromonas* by Parameswaran (1956) for *Potamon dehaani* and *Neptunus trituberculatus* by Matsumoto (1958) and for *Rhithropanopeus harrisi* by Szudardky (1963). The routes of axonal transport of the neurosecretory material synthesized in the neurosecretory cells of the brain of *P. gaimardii* are not clearly known, though there are indications that neurosecretory material is transported along the optic nerve from cells in Groups 1 and 2. This is similar to the results of Bliss and Welsh (1952) and Bliss, Durand and Welsh (1954).

The phenomenon of gliosecretion is noticeable in the brain of *P. gaimardii*. Indeed gliosecretion appears to be a more active process in the brain than in the optic ganglia. The routes of discharge or transport of the gliosecretion in *P. gaimardii* are not known. Gliosecretion has been reported in crabs by Szudardky (1963) and by Adiyodi (1969). Adiyodi (1969) observed that the gliosecretion underwent cyclic changes in relation to the moulting cycle, being most abundantly present in adult female *Paragrapus gaimardii* in the late C3 and early C4 stages (Intermoult) of the moult cycle. These were the stages in which *P. gaimardii* was examined. It is interesting to note that the phenomenon of gliosecretion by the allochthonous cells of the sinus gland as reported by Adiyodi (1969) was not clearly evident in *P. gaimardii*.

In the eyestalk of *P. gaimardii*, four types of neurosecretory cells were detected. The two types of medium neurosecretory cells are generally similar in their staining properties but differ notably in their shape. In the eyestalk of crabs, investigators have distinguished a number of different types of cells. The number of types varies
from two (Miyawaki 1956a, 1960) to six (Potter 1958, Matsumoto 1958). Although, as in the case of the neurosecretory cells of the brain, it is difficult to relate the neurosecretory cells of the eyestalk of P. gaimardii to those reported in the eyestalk of other crabs by other authors, some similarities can be discerned. The large cells of the eyestalk of P. gaimardii may correspond to the β cells of Enami (1951), the giant cells of Miyawaki (1956c) found that the Type I and Type II cells of Potter (1958), the median cells of Miyawaki (1960), the α cells of Valente (1959) and the B3 cells of Szudárky (1963). The medium oval and medium elongated neurosecretory cells of P. gaimardii may correspond to the α cells of Enami (1951), the B cells of Matsumoto (1958) and the B2 cells of Szudárky (1963). The medium elongated cells are also similar to the γ cells of Matsumoto (1958). The small cells of the eyestalk of P. gaimardii may be similar to the γ cells of Enami (1951), and of Matsumoto (1958), the Da Fano cells of Miyawaki (1956a), the Type IV cells of Potter (1958), the small cells of Miyawaki (1960) and the B1 cells of Szudárky (1963).

The distribution of the neurosecretory cells in the eyestalk of P. gaimardii resembles that figured for the crab, Geocarcinus lateralis (Bliss and Welsh 1952, Bliss Durand and Welsh 1954), except that Group E1 in P. gaimardii is fused with Group E4. This condition is somewhat similar to that reported for Sesarma intermedia by Matsumoto (1958). The E5 Group of cells reported by Matsumoto (1958) is present in P. gaimardii but Group E6 is absent.

The presence of different types of neurosecretory materials in the sinus gland of crabs has been reported by a number of investigators (Enami 1951, Bliss, Durand and Welsh 1954, Potter 1954, 1958, Rehm 1959, Szudárky 1963). In intermount P. gaimardii, using the PF technique, three types of secretory materials were observed. The predominant type of secretory material is basophilic and occurs as large globules, while near the basement membrane two types of acidophilic material are present. Three types of secretory materials are also detectable in the sinus gland, using the CHP, Mallory’s triple and the Azan techniques. A multiplicity of secretory material types, as reported by Potter (1958), both in the cells of the Medulla Terminalis X-organ and in the sinus gland was not observed in P. gaimardii. The PF-positive secretory material in the sinus gland of P. gaimardii may correspond to that of the A and AB endings of Carcinus maenas (Rehm 1959) and to the fuchsinophilic material of Rhithropanopeus harrisi (Szudárky 1963). The acidophilic material near the basement membrane of the sinus gland may likewise correspond to the B and D endings of Rehm (1959).

Whether there is a change in the chemical nature of the neurosecretory material in the process of storage or of release or of both, as has been suggested by Enami (1951), and by Szudárky (1963), cannot at present be ascertained for P. gaimardii. However, it is clear from this study and from an earlier one (Lake 1969), that a considerable modification in the histochemical properties of the neurosecretory material during the process of axonal transport does occur in P. gaimardii.

The presence of allochthonous cells in the sinus gland of P. gaimardii is established. These cells are of two basic types; those on the periphery of the sinus gland and which may be connective tissue cells and those within the sinus gland itself, which may be neuroglial cells. The neuroglial or ‘allochthonous’ cells of the sinus gland have been suggested by Enami (1951) and Miyawaki (1956a) to produce secretory material, or to be involved in the process of release of secretory material (Hodge and Chapman 1958) or to be involved in the process of both elaboration and transformation of the secretory material (Gabe 1966). Adiyodi (1969) has recently produced evidence for the idea that allochthonous cells of the sinus gland actively elaborate and release their own secretory products.

The presence of allochthonous cells or neuroglial cells in the sinus gland of crabs has been shown at the electron microscope level by Hodge and Chapman (1958) and Meusy (1968) and in crayfish by Shivers (1967) and Bunt and Ashby (1967). It is interesting to note that Meusy (1968) observed that the cytoplasm of the neuroglial cells was very rich in glycogen. This abundance of glycogen may correspond to the gliosecretion or part of the gliosecretion reported by Adiyodi (1969).

The histochemical tests applied to serial sections of the cephalic neurosecretory system of Paragrapus gaimardii reveal that the neurosecretory material is a protein (alloxan-Schiff), rich in S-S groups (Performic acid-Alcian blue and permanganate oxidation-Alcian Blue), with some SH groups present (DDD). The PAS test reverts with granular material in the perikarya of neurosecretory cells and this reaction is abolished by pre-treatment with diastase. Thus weakly acidic 1,2 glycol groups may be present in the neurosecretory material, especially when the material is in the cell perikarya but not when it is in the neurohaemal organ. The presence of PAS-positive material in the neurosecretory cells of crabs has been observed by Miyawaki (1956b, c) and by Gabe (1952, 1966). As is the case in P. gaimardii, Miyawaki (1956b, c) found that the degree of PAS-reactivity was greater in the cell perikarya than in the neurohaemal sites (sinus gland). The PAS-positive material in Telmessus cheiragonus was metachromasia-negative and diastase-resistant (Miyawaki 1956c). Miyawaki (1956b, c) concluded that the PAS-positive material was probably a neutral mucopoly-saccharide or a mucoprotein. The PAS-positive material in P. gaimardii is not diastase-resistant. Glycol groups may be associated with the neurosecretory material or alternatively as in other cells of the cerebral nervous system, glycogen is commonly present in neurosecretory cells.

That the neurosecretory material of crustaceans is a protein, rich in disulphide groups has been suggested from histochemical evidence by Rehm (1959), and Lake (1969, 1970). Using chromatographic techniques, Otsu (1965) and Otsu and Sonobe (1965) have produced evidence to indicate that chromactivating substances from the brain and the thoracic ganglion of the crab Eriocheir japonicus, are polypeptides, of 10 to 13 amino acids, including cystine and rich in S-S bonds.
ACKNOWLEDGEMENTS

I am grateful for the technical assistance of Mrs J. Lowrey and Mr B. Dixon as well as to the assistance of Dr R. Mawbey and Mr T. L. Sward in collecting some of the crabs used in this study. I would like to thank Dr I. S. Wilson for valuable criticism and discussion of the manuscript. This study was supported by a University of Tasmania Research Grant.

REFERENCES

Plate 1.—Longitudinal section of Region 4 of the brain of *P. quinquevittatus*, showing large monopolar neurosecretory cells (A) and medium monopolar neurosecretory cells (B). Stained with paraldehyde-fuchsin technique. Magnification x 800.

Plate 2.—View of large monopolar neurosecretory cell in Region I of the protocerebrum of *P. quinquevittatus*. Stained with paraldehyde-fuchsin technique. Magnification x 1,700.

Plate 3.—Neuroglial cells displaying signs of secretory activity. They are located near Region I of the protocerebrum of *P. quinquevittatus*. Stained with the paraldehyde-fuchsin technique. Magnification x 1,500.

Plate 4.—Large monopolar neurosecretory in position E1 of the eyestalk of *P. quinquevittatus*. Stained with Mallory's Triple technique. Magnification x 1,600.
Plate 5.—Longitudinal section of the sinus gland of *P. guimardii*. Stained with the alcian yellow/alcian blue technique. Magnification × 800.