PAPERS AND PROCEEDINGS OF THE ROYAL SOCIETY OF TASMANIA, VOLUME 113, 1979

(TASMANOCYPRIS, A NEW MARINE OSTRACODE GENUS: AND A REVIEW OF THE FAMILY PARACYPRIDIDAE (CRUSTACEA; OSTRACODA)

by K.G. McKenzie

Riverina College of Advanced Education, Wagga Wagga, N.S.W.

(with 32 figures)

ABSTRACT

Tasmanocypria, a new marine ostracode genus with the type species T. dartnallii n.sp., is described. Relationships between subfamilies and genera in the family Paracyprididae, to which it belongs, are discussed based on the recent literature and re-examination of some type materials.

INTRODUCTION

Working at Oyster Harbour, near Albany, Western Australia, the author identified as ? Aglaiaella setigerata (Brady, 1880) a large cypridid ostracode which occurred in the marine influenced southern Harbour, but found only females (McKenzie 1964, 1969). The taxon continued to be of interest with the description of several related ostracodes from South Africa (Benson and Maddocks 1964, Hartsinn 1974) and the discovery of a fossil Australian species (McKenzie 1974). Recently, a population which included several males was collected off Little Swanport, Tasmania, and it is at last possible to give a complete description. This necessitates the erection of a new genus and has led to a review of the family to which it belongs.

SYSTEMATIC DESCRIPTION

Subphylum OSTRACODA Latreille, 1806
Class PODOCOPIDAE Müller, 1894
Order METACOPINA Sylvester-Bradley, 1961
Superfamily CYPRIDIDAE Baird, 1845
Family PARACYPRIDIDAE Sars, 1923
Subfamily PARACYPRIDINAE Sars, 1923 (partim)
Genus TASMANOCYPRIS n. gen.

Type Species: Tasmanocypria dartnallii n.sp.

DERIVATION OF NAME: From Tasmania and the generic suffix - cypris.

DIAGNOSIS: Subtriangular paracypridinid; anterior and posterior margins subequally rounded; left valve slightly larger than right valve; valve surfaces smooth, micro-punctate and pigmented (at least in the type species); relatively large, over 1 mm in all three known species; greatest height median; dorsal view, regularly elliptical; selvage weak; inner lamellae broad with large anterior and posterior vestigules; marginal (radial) pore canals numerous and branched; normal pore canals scattered, simple, open; hinge of ridge and groove type; adductor muscle scars clustered in the typical paracypridinid pattern, with an overlying elongate scar (sometimes divided)
Tasmanocypris: a Review of the Paracyprididae

plus three anterior and two posterior scars, and with two mandibular scars. Antennule 7-segmented with stout terminal spines; antenna with reduced 'matatory' setae; mandible coxale with 4-5 cuspatate teeth; maxillule third lobe with three smooth Zahnbrostien; maxilla (P I) endopod lobate, undivided in females, but a two-segmented clasping organ in males; walking leg (P II) powerful; P III with a distinct terminal segment and undivided long reflexed terminal bristle; furca with 2 serrate claws, an anterior bristle and two prominent posterior bristles; Zenkers Organ with five whorls of spines (Chitinrosettes); tubes of the testes forming near circles and opening dorsally.

Remarks

The size of this new genus and the ascription of a 'Challenger' species to Macrocyclops (Brady 1880) led to an initial assignment of this taxon to Macrocyclopidae. But the hinge, muscle scars and soft anatomy are all paracypridid-like. The new genus is closest to Phylatenoaphore Brady, 1880 which is also a typical paracypridid genus in Australasian waters but differs from Phylatenoaphore particularly in its regularly subtriangular shape because Phylatenoaphore is more pointed posteriorly. Further, the posterior bristles on the furca differ between these genera (Brady 1880).

Probably, a neotype is required for Phylatenoaphore selalandica since the available syntypes differ from the concept of this species given by Brady and do not include specimens from Wellington Harbour which the species name indicates as the type locality. Abundant material of the original sediment collected from Wellington Harbour during the 'Challenger' expedition is available at the British Museum (Natural History).

The short antennal 'matatory' setae and Zenkers Organ with five Chitinrosettes relate Tasmanocypris to Candonidae, but candonids are predominantly freshwater forms also have different radial pore canals and different furcae. Cycloocypridines are also related but typically much smaller and subcircular in shape. Thallassocypridines are smaller, have different marginal pore canals and characterise different habitats - estuarine or freshwater. These relationships are considered further after description of the type species.

Tasmanocypris dartnalli n.sp.
(figs 1-23)

Derivation of Name: from its collector, A.J. Dartnall, Zoology Department, the University of Tasmania.

Type Material:
Holotype: mature male; Australian Museum Reg. No. P.26683.
Paratype: ovigerous female; Australian Museum Reg. No. P.26684

Further paratypes are stored at the Tasmanian Museum, Hobart; the British Museum (Natural History), London; and the Smithsonian Institution, Washington.

Description

Carapace large; regularly subtriangular; anterior and posterior subequally rounded; dorsum convex; venter almost straight, slightly inflexed anteromedially; surface smooth, micropunctate, with scattered hairs; colour often dark brown at the extremities and near the dorsum; soft parts yellowish brown, ova orange brown; greatest height medial and less than half the length; in dorsal view, regularly elliptical; greatest breadth medial and over two-fifths the length. Internally: lamellae broad anteriorly and posteriorly, narrow ventrally; zone of concrescence relatively narrow throughout; selvage very weak, submarginal; radial pore canals typically branched, especially anteriorly and very numerous; normal pore canals scattered, simple, open; hinge weakly lophodont, with elongate low terminal elements in the right valve and an accommodation groove in the slightly larger and over-lapping
left valve; adductor muscle scars clustered in a rosette comprising an elongate upper scar (sometimes divided), three anterior and two posterior scars, plus two mandibulars, other scars not observed.

Artennule 7-segmented; length ratios of the segments 80:15:25:20:17:16:12; dorsal/ventral chaetotaxy of the segments 1/2, 1/1, 1/1, 2/2, 2/2, 2/2, plus two terminal spine-like bristles. Antenna 5-segmented; length ratios of the three endopod segments 6:5:3; ventral sensory bristle of the first endopod segment sutured medially, 'napatory' setae short, 7 in number and sited distally on the segment, ventrodistally is a long bristle, serratte from its mid-length and terminating in a long sensory filament; second segment with the usual complement of bristles and two dorsodistal claws; third segment with four terminal claws and several bristles including a club bristle with a long sensory filament; exopod modified as a long spiky bristle sited proximodorsally on the first endopod segment. Mandible coxale with 4-5 cuspatate teeth and small toothbrush bristles between at least the first two of these; endopod 4-segmented bearing an epipod with 5 Strahlen; chaetotaxy as illustrated and including 3 terminal claws. Maxillule palp and lobes normal; distal segment of the palp broad; third lobe with 3 smooth Zahnborsten; epipod with 18 Strahlen plus 3 downwards directed setae. Maxilla (P 1) in females with an unsegmented endopod bearing three short terminal setae; epipod with 5 Strahlen; exopod with about 15 strong bristles; in males the palp is modified into the usual cypridacean clasping organs. P II 5-segmented; length ratios of the segments 50:65:40:30:12; chaetotaxy normal; margins of the three penultimate segments bearing several clumps of hairs, as illustrated; terminal claw powerful. P III reflexed; 4-segmented; length ratios of the last 3 segments 70:80:12; terminal segment distinct with two small hooked setae and a long reflexed seta which is hisurate from its mid-length and serrate for the last 25% of its length. Chitin support with a simple blunted tip, forked distally; the anterior branch straight, the posterior branch strongly recurved. Purca powerful; length:height ratio about 10:1 measured at the mid-length; armature of 2 large claws, the anterior/posterior claw ratio 4:3, both claws strongly serrate distally; bristles comprising one anterior and two posterior, the longest of these being the first posterior bristle. Labrum simple, labium with a tuft of hairs. In males: Zenker's Organ with 5 Chitinrosettes; hemipenis with a large tapering basal lobe and tongue-like anterior process. Cups of the nauplius eye fused.

Dimensions - Holotype, male: length 1.19 mm, height 0.56 mm, breadth 0.55 mm. Paratype, female - length 1.21 mm, height 0.57 mm, breadth 0.57 mm.

Type Locality - Little Swanport, east coast of Tasmania, at about Lat. 42°17'S. Collected at eight stations, their depths varying from about 3.2 m to 18.5 m. The substrate is mostly well sorted sand with Mn around 2.50 4; specific permeability determinations demonstrate that these sands are two phase (A.J. Bartnall personal communication, December 1977).

Distribution - The species has also been collected from Bull Bay, NE Brumby Island, Tasmania.

Other Species - The only other living species in the genus appears to be *Tasmanocypris artiloba* (Brady, 1880) which ranges from Oyster Harbour, near Albany, Western Australia, to Port Jackson, Sydney, New South Wales. Unfortunately, the syntypes of *T. artiloba* deposited in the 'Challenger' collection at the British Museum (Natural History), London, do not match Brady's type description and selection of a neotype from the original sediment is necessary. Another species occurs fossil 2 m above the base of the type Mitchillian section at the Pumping Station locality, Bairnsdale, Victoria. It was previously identified as *Aglatella* sp. (McKenzie 1974). Geologic Range - Neogene-Recent.

RELATIONSHIPS IN THE FAMILY PARACYPRIDIDAE

Paracyprididae are a distinctive family of cypridacean ostracodes, comprising the subfamilies Paracypridinae, Thalassocypridinae and Cyclocypridinae with the following
Tasmanocypria: a Review of the Paracyprididae

common features: an onion-shaped entrance to the Zenkers Organ; a two-segmented clasping organ in the male P 1; and the occurrence of natatory setae on the antennae, although these are often reduced. These common characters separate them from Candonidae which otherwise are closely related (Hartmann and Puri 1974). Probably, Candonidae diverged from an ancestral paracypridid-like stock in the Late Mesozoic.

Some paracyprids are homeomorphic with genera in the family Macrocyprididae. In particular, Tasmanocypria is homeomorphic with Macrocypra and Phylactophora with Macrocypria. Macrocyprids, however, have a well developed hinge structure with prominent crenulate terminal elements and a characteristic muscle scar pattern (Triebel 1960), criteria by which they can be readily distinguished from other Ostracoda. They differ very strongly from paracyprids in the soft anatomy also and research in hand will no doubt be definitive in establishing their relationships (Dr. R.F. Maddocks personal communication, October 1977).

As understood herein, the family Paracyprididae comprises the following sub-families and genera:
1. Subfamily Paracypridinae Sars, 1923 with the living genera Paracypra Sars 1866; Phylactophora Brady 1880; Aglataella Daday 1910; Aglactogyna Sylvester-Bradley 1947; Ghardagia Hartmann 1964; Coralllagia Hartmann 1974; and Tasmanocypria n. gen.
2. Subfamily Thalassocypridinae Hartmann and Puri 1974 with the living genera Thalassocypra Hartmann 1955; Thalassaecypris Hartmann 1957; Pontoparia Vavra 1901; Parapontoparia Hartmann 1955; Paracypra Sars 1910; Dolerocypra Tressler 1937; Allocypra Rome 1962; Macrocypria Rome 1962; and Mangania Harding 1962.
3. Subfamily Cyclocypridinae Kaufmann 1908 with the living genera Cyclocypra Brady and Normann 1889; Cyclocypra Dobbin 1941; Cyprid Zemker 1854; Phylocypra Vavra 1898; and Candecypris Purtos 1933. In a later paper, Dobbin (1969) noted that she believed the type species of her genus Cyclocypra to be a late instar of a Cyclocypra species.

No fossil thalassocypridines are as yet known but fossil taxa which have been assigned to the other two subfamilies range from the early Mesozoic.

The approach used to determine the interrelationships between these taxa has been to re-examine type materials of some inadequately known genera and synthesize from the literature and the results of such re-examinations. This task has been simplified recently by the publication of well illustrated faunas from southern Africa and southwest Florida in which several relevant genera occur (Hartmann 1974, Keyser 1975).

There is no problem in distinguishing paracypridines from cyclocypridines because, whereas paracypridines are elongate or bean-shaped and relatively large (about 1 mm), the cyclocypridines are typically subcircular in outline and relatively small (about 0.5 mm). Further, cyclocypridines usually have long antennal natatory setae but these setae are reduced in paracypridines. The single known Australian exception to this last generalisation is a Tasmanian cyclocypridine which was collected in 1966 from moist forest moss at the edge of Arthur Plains, southwest Tasmania. When dissected it was found to be blind and to have reduced antennal natatory setae (presumably so adapted for its semi-aquatic terrestrial habitat) although otherwise a typical cyclocypridinid.

The distinctions between paracypridines and thalassocypridines are less obvious because all thalassocypridine genera are more or less elongate or bean-shaped. With respect to other shell characters, paracypridines are well calcified and typically have numerous branched radial pore canals but thalassocypridines are thinner shelled and have less numerous straight (unbranched) radial pore canals. Usually, paracypridines are larger than thalassocypridines.

On soft parts, several characters are commonly used to distinguish between genera.
K.G. McKenzie

in the two subfamilies. Unfortunately, re-examination of types indicated that some of these characters were incorrectly observed and illustrated in the original generic descriptions. Such errors are corrected here.

All thalassocypridines have 7-segmented antennules (except Thalassocypris aestuaria Hartmann 1957 in which it is 6-segmented) whereas in paracypridines the number of antennular segments is 5 in Gondolatia and Coralliaglata, 6 in Aglatella and 7 in the four remaining genera. With the exception of Dolerocypris, the antennal natatory setae of all thalassocypridine genera are well developed, extending beyond the tips of the terminal claws; and even in Dolerocypris they extend to the mid-length of the claws. In all paracypridines these antennal natatory setae are reduced, reaching barely beyond the second endopod segment in Gondolatia, Aglatocypris, Aglatella and Paracypris and even shorter in Phylotonophora and Tasmanocypris (in Coralliaglata they are reduced in number also, to a single short seta).

In some other characters, the two subfamilies seem to have evolved in parallel. For example, both Dolerocypris a thalassocypridine, and Tasmanocypris, a paracypridine, carry three smooth Zahnborsten on the maxillule third lobe, while two toothed Zahnborsten are the usual complement of this lobe in the other genera of both subfamilies with minor variations in the type of toothing. In Dolerocypris, the penultimate segment of the cleaning limb is sutured medially (re-examination of holotype) and it is divided in Paracypris, Coralliaglata, Paracypris and Pontoparia (Müller 1912, Sars 1923, Harding 1962, Hartmann 1974) but in other thalassocypridines and paracypridines it is neither divided nor sutured. The chinin supports all paracypridines and thalassocypridines are very similar.

A character which is usually conceded importance in determining cypridean relationships is the furca. In both subfamilies, the furcal shaft carries two powerful claws which are often coarsely serrate, e.g. Paracypris, Tasmanocypris, and in all genera there is a small bristle above the anterior claw. But the number of posterior bristles varies, being either one or two in most cases. Sometimes, they are reported as absent, e.g. Thalassocypris. In several taxa, one or two stiff hairs occur on the margin behind the posterior claw and seem to be homologous with the posterior bristles in other genera. These stiff hairs can be found in genera which were originally described as carrying only one or as lacking posterior bristles. Thus, the holotype of Dolerocypris, which was described as having a single posterior bristle (Tressler 1937) has in fact two stiff hairs behind the posterior furcal claw.

Tressler's mention of a posterior bristle apparently confused Keyser (1975) who could not see a bristle on the holotype, whereas the stiff hairs are clearly visible under high power using a light microscope. In the original description of Paracypris also, it was recorded that the furca lacked posterior bristles but careful re-examination of the holotype slide has led to the discovery of a single stiff hair behind the posterior claw. Prominent single posterior bristles characterise the thalassocypridine genera Mungawa, Macrocystis and Alloocypris. All paracypridines have two posterior bristles. In Paracypris, these are prominent and about equally long, in Gondolatia, Aglatocypris, Aglatella and Coralliaglata they are small and equal, in Phylotonophora both are prominent with the former longer than the anterior bristle and in Tasmanocypris this situation is reversed because the anterior bristle is longer.

Environmentally, thalassocypridines occur in estuaries, among mangroves, in saline oases or else are freshwater adapted (Hartmann 1955, 1957, Tressler 1937, Harding 1955, 1962, Rome 1962, Keyser 1975). All paracypridines, on the other hand, are marine adapted but some species have been described from marine estuaries, strongly brackish environments such as the Mareotsis, near Alexandria, or the saline Red Sea (Daday 1910, Brady 1868, 1880, Sars 1923, Hartmann 1964, McKenzie 1967). These differing environmental preferences suggest that thalassocypridines evolved from paracypridines and represent a continuing continental invasion by descendants of that older stock.
Tasmanocypris: a Review of the Paracyprididae

ACKNOWLEDGEMENTS

Mr. A.J. Dartnall returned to the type locality when he knew of my interest in the taxon and collected at several stations. His material provided first specimens of the hitherto elusive males. The United States Museum of Natural History; Smithsonian Institution, Washington, D.C. (Dr. L.S. Kornicker), forwarded the types of Doloreocypris taeniemis Tressler, 1937 - USNM 71515, Acc. No. 139444. The Zoological Museum, Oslo (Dr. M. Christiansen) provided the types of Paracypris tenuis (Sars, 1905) Reg. Nos. F 11756 (female) and F 11757 (male). The Hancock Museum, Newcastle-upon-Tyne (Mr. A. Tynan) loaned the types of Aglatacypris parva (Brady, 1868) - No. 8 62. The available material of Tasmanocypris setigera (Brady, 1868) and of Phygocypris sealandica Brady, 1880 in the 'Challenger' collection at the British Museum (Natural History) were examined some years ago when the author was a member of the staff. The Natural History Museum, Vienna (Dr. G. Pretzmann) loaned the types of Aglatacypris stagnalis Baday, 1910. Mrs. A. Perry typed the manuscript. The research was partially supported by A.R.G.C. grant D 76/15127.

REFERENCES

FIGURE EXPLANATIONS

Taenionymon darwinii n.gen., n.sp., adult male, holotype, AM P.26685. Figure 2, adductor muscle scars; fig. 5, detail serrate bristle and club-shaped bristle antennal endopod; fig. 8, detail sensory bristle, proximoventral first antennal endopod segment; fig. 11, maxillule third lobe with 3 Zähnborsten; fig. 13, hemipenis; fig. 14, left palp P I; fig. 15, right palp P I; fig. 17, Zenker's Organ; fig. 23, P III.

Adult female, paratype, AM P.26684. Figure 1, internal view carapace left valve; fig. 3, antennule; fig. 4, antenna; fig. 6, maxillule palp and lobes (segments only); fig. 7, P I; fig. 9, P I endopod; fig. 10, labrum; fig. 12, mandible coxa; fig. 16, mandible endopod; fig. 18, chitin support; fig. 19, furca; fig. 20, detail, end of long reflexed bristle, P III; fig. 21, P II endopod; fig. 22, P II protopod.

Agatatella stagnalis Daday, 1910, adult female, co-type, Natural History Museum, Vienna. Figure 24, maxillule palp and third lobe with Zähnborsten; fig. 25, P I (part only); fig. 26, detail, terminal segment, P III; fig. 29, detail, end of long reflexed bristle, P III; fig. 30, antenna, detail showing 'natatory' setae; fig. 32, anterior furca.

Paracypria tenella (Sars, 1905), adult male, co-type, Zoological Museum, Oslo, Reg. No. 11757. Figure 27, anterior furca; fig. 31, chitin support.

Adult female, co-type, Zoological Museum, Oslo, Reg. No. 11756. Figure 28, chitin support.

Magnifications: Fig. 1-x 80.

Figs 2-4, 6, 7, 9, 10, 12-19, 21-23, 28, 31-x 200.

Figs 24, 25, 27, 30, 32-x 400.

Figs 5, 8, 11, 20, 26, 29-x 800.