Effect of specific dietary constituents on coronary heart disease risk factors

Kiran Deep Kaur Ahuja
Graduate Diploma in Nutrition and Dietetics
Masters in Biomedical Science

Submitted in fulfilment of the requirements for the
Degree of Doctorate in Philosophy

University of Tasmania

September 2006
Candidate Declaration

I certify that the thesis entitled

“Effect of specific dietary constituents on coronary heart disease risk factors”

submitted for the degree of Doctorate in Philosophy is the result of my own research, except otherwise acknowledged and that this thesis in whole or in part has not been submitted for an award, including a higher degree, to any other university or institution.

This thesis may be made available for loan and limited copying in accordance with the Copyright Act 1968.

Full Name Kiran Deep Kaur Ahuja
Signed
Date October 9, 2006
I wish to express my sincere gratitude and appreciation to everyone who has been involved in the underlying work of this thesis, with special thanks to:

Professor Madeleine Ball, my research supervisor, initiator and facilitator of this research and Head of School of Human Life Sciences, University of Tasmania, Launceston, Tasmania, Australia.

Dr Iain Robertson, biostatistician, who showed me the tricks of the statistical trade.

Associate Professor Dominic Geraghty, my consultant and Graduate Research Coordinator, who often had to deal with my research related panic.

This research was possible with the generous funding and donations from various organizations. The Clifford Craig Medical Research Trust, Launceston, Tasmania provided the funds for the tomato olive oil study and clinical room facilities for both the tomato-olive oil and the chilli-drug studies. Heinz Australia and MasterFoods Australia provided the tomato products and chilli for the research projects, respectively. I would also like to take this opportunity to express thanks to the participants involved in the two studies, without whom this research would not have been possible.

Although all the data collection, laboratory analysis (excluding serum lycopene analysis) and statistical analysis was performed by myself, a number of people were instrumental in assisting my PhD work. Dr. Andrew Williams instructed me in the use of the metabolic cart and cannulation and blood collection techniques. Ms. Jane Pittaway helped in blood collection for the tomato-olive oil study and laboratory analysis for lipids, insulin and C-peptide for both tomato-olive oil and chilli studies. Mr. Dale Kunde and Mr. Murray Frith were always available to troubleshoot the ‘temperamental’ spectrosopes. Associate Professor Rob Fassett and his medical team
looked after the study participants during the data collection for the chilli-drug research. Dr. Eric Colquhoun loaned us the metabolic cart for collection of the energy expenditure data (chilli study). Dr. Dan Dwyer wrote the data collection program for the metabolic cart. Ms Elaine Whitham, Head, Toxicology/Special Biochemistry, Department of Chemical Pathology, Women's and Children's Hospital, Adelaide, Australia performed the lycopene analysis. Dr. Tom Hartley and Dr. David Woodward were involved in the capacity of advisors in various aspects of data collection, data interpretation and thesis writing. Technical staff especially Hetty Binns, Amanda Crawford, and Merrilyn Johnson provided laboratory support.

Mrs. Maureen Bryan and Ms. Janine Tarr provided me with a place to stay and a home to come to during my data collection days in Hobart. Friends and colleagues especially Jane, Cassie, Jeff, Megan, and Paul were always available to help, support and lend a hand during the years of my PhD candidature. A special thanks to the Grewal family for all the encouragement and entertainment through my PhD years.

I dedicate this thesis to my parents, Gurcharan Kaur and Daman Singh Ahuja.
Table of Contents

Title Page ...i
Candidate Declaration...ii
Acknowledgments..iii
Table of Contents ..v
List of Tables ...viii
List of Figures ..ix
List of Figures ..ix
Acronyms used in this thesis... x
Acronyms used in this thesis... x
Publications and presentations at conferences during the PhD candidature...............xi
Abstract ..xiii

Chapter 1

Introduction and a brief review of literature ...1

1.1 Risk factors for CVD

1.1.1 Obesity ..4
1.1.2 Insulin resistance ...5
1.1.3 Hyperglycemia ..6
1.1.4 Hyperinsulinemia ..7
1.1.5 Hypertriglyceridemia ...9
1.1.6 Low density lipoprotein ..11
1.1.7 Oxidation of low density lipoprotein ...12
1.1.8 High Density Lipoprotein ...13
1.1.9 Endothelial dysfunction ...14
1.1.10 Hypertension ...17
1.1.11 Relation between SNS overactivity and metabolic diseases19
1.1.12 SNS overactivity: A cause of insulin resistance?19

1.2 Relation between diet and CHD risk factors

1.2.1 Fats and carbohydrates ...21
1.2.2 Carotenoids ..24
 #### 1.2.2.1 Antioxidative properties ...26
 #### 1.2.2.2 Interaction and absorption ..27
4.4 Results ... 82
4.5 Discussion ... 86

Chapter 5 88

Effect of capsaicin, dihydrocapsaicin and curcumin on the copper-induced oxidation of human serum lipids in vitro ... 88
5.1 Abstract ... 88
5.2 Introduction .. 89
5.3 Materials and Methods .. 90
5.4 Results ... 91
5.5 Discussion ... 94

Chapter 6 96

Effect of chilli consumption on postprandial glucose, insulin and energy metabolism.. 96
6.1 Abstract ... 96
6.2 Introduction .. 97
6.3 Subjects and Methods ... 98
5.4 Results ... 101
6.5 Discussion ... 108

Chapter 7 112

Effect of chilli consumption on postprandial vascular function in humans 112
7.1 Abstract ... 112
7.2 Introduction ... 113
7.3 Subjects and Methods ... 114
7.4 Results ... 116
7.5 Discussion ... 119

Chapter 8 121

General summary, discussion and conclusion .. 121
8.1 Tomato olive oil combination: A step towards reducing CHD risk? 121
8.2 Chilli: hype or hope? A bit(e) of both ... 124

Conclusion .. 133

References .. 134

Abstracts and posters from conference presentations .. 176
List of Tables

Table 1.1 Dietary characteristics in the United States, Greece and Japan in the 1960s........25
Table 1.2 Capsaicinoids – structure, amount and hotness ..32
Table 1.3 Nutrient composition of Chilli ...34
Table 2.1 Baseline characteristics of the study participants.54
Table 2.2 Dietary nutrient intake on high olive oil and low olive oil diet55
Table 2.3 Serum lycopene, lipids and lipoproteins at the start and end of each dietary period. ...57
Table 2.4 Oxidizability of serum and antioxidant status at the end of high olive oil and low olive oil diet. ..57
Table 3.1 Daily energy and macro-nutrient intake on the bland and the chilli diet.....71
Table 3.2 Anthropometric and some metabolic measurements at the end of the bland and the chilli diet...72
Table 4.1 Serum lipids, lipoprotein, parameters of serum oxidation and TAS at the end of the bland and the chilli diet............................84
Table 4.2 Body weight and parameters of serum lipoprotein oxidation at end of the bland and the chilli diet, by gender ...85
Table 6.1 Some metabolic parameters at baseline and at fasting state before the meals. ...103
Table 6.2 Comparison of maximal increase and incremental area under the curve for some metabolic parameters on the three meals.................................105
Table 6.3 Comparison of maximum increase and AUC for some metabolic parameters on the three meals in different BMI groups...107
List of Figures

Figure 1.1 Interrelationship between some of the CVD risk factors3
Figure 1.2 Effect of cholesterol ester transfer protein in normal triglyceride and
hypertriglyceridemic state. ..10
Figure 1.3 Oxidative modification hypothesis of atherosclerosis...............................13
Figure 1.4 Effects of different stimuli on vascular endothelium.15
Figure 1.5 Potential mechanisms linking obesity/insulin resistance and hypertension ...17
Figure 1.6 Landsberg Hypothesis – relation between obesity and hypertension............18
Figure 1.7 Metabolic changes due to elevated sympathetic nervous system activity19
Figure 1.8 Some varieties of chilli ..31
Figure 1.9 Relation between Scoville heat unit and capsaicinoid content of chilli33
Figure 3.1 Graphical representation of a radial artery wave form and transferred aortic
waveform. ...67
Figure 3.2 Effects of glyceryl-trinitrate and salbutamol on some vascular parameters ..74
Figure 5.1 Copper-induced oxidation curves for serum with different concentrations of
capsaicin, dihydrocapsaicin and curcumin ..93
Figure 6.1 Test meal protocol ...99
Figure 6.2 Fasting and postprandial glucose, insulin and energy expenditure after
consumption of bland and chilli meals ...104
Figure 7.1 Vascular parameters and serum insulin at fasting to up-to two hours after the
consumption of meals. ..118
Acronyms used in this thesis

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVD</td>
<td>Cardiovascular disease</td>
</tr>
<tr>
<td>AG</td>
<td>Augmentation</td>
</tr>
<tr>
<td>AGE</td>
<td>Advanced glycation end products</td>
</tr>
<tr>
<td>Alx</td>
<td>Augmentation index</td>
</tr>
<tr>
<td>Apo-A1</td>
<td>Apolipoprotein A1</td>
</tr>
<tr>
<td>Apo-B</td>
<td>Apolipoprotein B</td>
</tr>
<tr>
<td>AUC</td>
<td>Area under the curve</td>
</tr>
<tr>
<td>BMI</td>
<td>Body mass index</td>
</tr>
<tr>
<td>BMR</td>
<td>Basal metabolic rate</td>
</tr>
<tr>
<td>CETP</td>
<td>Cholesterol ester transfer protein</td>
</tr>
<tr>
<td>CHD</td>
<td>Coronary heart disease</td>
</tr>
<tr>
<td>CI</td>
<td>Confidence interval</td>
</tr>
<tr>
<td>DBP</td>
<td>Diastolic blood pressure</td>
</tr>
<tr>
<td>eNOS</td>
<td>Endothelial nitric oxide synthase</td>
</tr>
<tr>
<td>ET-1</td>
<td>Endothelin-1</td>
</tr>
<tr>
<td>GTN</td>
<td>Glyceryl trinitrate</td>
</tr>
<tr>
<td>HCLF</td>
<td>High carbohydrate low fat</td>
</tr>
<tr>
<td>HDL</td>
<td>High density lipoprotein</td>
</tr>
<tr>
<td>HR</td>
<td>Heart rate</td>
</tr>
<tr>
<td>LDL</td>
<td>Low density lipoprotein</td>
</tr>
<tr>
<td>LO</td>
<td>Low olive oil</td>
</tr>
<tr>
<td>MD</td>
<td>Mean difference</td>
</tr>
<tr>
<td>MUFA</td>
<td>Monounsaturated fatty acid</td>
</tr>
<tr>
<td>NO</td>
<td>Nitric oxide</td>
</tr>
<tr>
<td>OO</td>
<td>Olive oil</td>
</tr>
<tr>
<td>PUFA</td>
<td>Polyunsaturated fatty acid</td>
</tr>
<tr>
<td>PWA</td>
<td>Pulse wave analysis</td>
</tr>
<tr>
<td>SBP</td>
<td>Systolic blood pressure</td>
</tr>
<tr>
<td>SEVR</td>
<td>Subendocardial viability Ratio</td>
</tr>
<tr>
<td>SFA</td>
<td>Saturated fatty acid</td>
</tr>
<tr>
<td>SNS</td>
<td>Sympathetic nervous system</td>
</tr>
<tr>
<td>TG</td>
<td>Triglyceride</td>
</tr>
<tr>
<td>VLDL</td>
<td>Very low density lipoprotein</td>
</tr>
</tbody>
</table>
Publications and presentations at conferences during the PhD candidature

(May 2002 to September 2006)

A. Publications and presentations directly arising from the work described in this thesis

Published articles

Chapter 2

Chapter 3

Ahuja KDK, Robertson IR, Geraghty DP and Ball MJ. The effect of 4-week chilli supplementation on metabolic and arterial function in humans. Eur J Clin Nutr advance online publication, August 23, 2006; doi:10.1038/sj.ejcn.16025172006.

Chapter 4

Chapter 5

Chapter 6

Abstract publications and Conference Presentations

Ahuja K, Ball M. Lycopene and olive oil combination: A step towards reducing CHD risk? Health & Medical Research Week. Launceston General Hospital, Launceston, 2003.

Geraghty D, Ahuja K, Fassett R, Ball M. Effect of regular chilli consumption on endothelium-dependent and -independent vasodilation. Joint meeting of Australasian

Ahuja K, Robertson I, Williams A, Geraghty D, Ball M. Effect of meals containing chilli on glucose metabolism and energy expenditure. Heart Foundation Conference and Scientific meeting. Sydney, Australia, 2006.

B. Articles and presentations related to but not directly arising from this thesis

Published articles

Ahuja KD, Ashton EL, Ball MJ. Effects of a high monounsaturated fat, tomato-rich diet on serum levels of lycopene. Eur J Clin Nutr 2003;57:832-841.

Abstract publications and conference presentations

Davies AN, Ahuja K, Ball M. Chilli diet may affect sleep quality and daytime activity. 18th Annual Scientific meeting of the Australasian Sleep Association. Gold Coast, Queensland, Australia, 2005 (abstract published in Internal Medicine Journal 2006; 36: A38).

Abstract

Diet influences the coronary heart disease (CHD) risk factors including lipids and lipoproteins, glucose, insulin, and endothelial function. This research thesis examined the effects of the three different (tomato-olive oil combination and chilli) but widely consumed dietary components, on a range of metabolic and vascular parameters of CHD risk.

The aims of this thesis were to investigate the effects of:

- a lycopene (tomato)-rich high monounsaturated fat (light olive oil) diet and a lycopene-rich high carbohydrate diet (each diet of 10 days duration) on serum lycopene, lipid profile and serum oxidation in 21 men and women aged between 22 and 70 years with a BMI of 18 – 30kg/m².

- a chilli blend (30g/day) supplemented diet and a bland (chilli free) diet (each diet of four week duration) on a range of metabolic and vascular parameters in 36 men and women aged between 22 and 70 years with a BMI of 18 – 35kg/m². The measured parameters included serum lipids and lipoproteins, lipid oxidation, glucose, insulin, basal metabolic rate (BMR), heart rate (HR), peripheral and aortic blood pressure, augmentation index (AIx; a measure of arterial stiffness) and subendocardial viability ratio (SEVR; an indicator of myocardial perfusion).

- single meals containing chilli blend (30g) with or without the background of a chilli-containing diet on a range of postprandial metabolic and vascular parameters (n = 36).

- a chilli blend supplemented diet (of three weeks duration) on endothelial-independent and -dependent vasodilation (assessed after administration of glyceryl trinitrate (GTN) and salbutamol, respectively) compared to the effects of a bland diet (n = 15).

- the active ingredient of spices (in different concentrations) including chilli (capsaicin and its analogue dihydrocapsaicin), turmeric (curcumin), piprine (black pepper)
pepper) and the colour pigment of tomatoes (lycopene) on the in vitro copper-induced
oxidation of serum lipids.

The dietary intervention studies were conducted using a randomized crossover design on
a weight maintenance regime. Two different groups of people volunteered to take part in
the tomato-olive oil and the chilli studies. All participants from the four week chilli study
also took part in the meal studies.

Ten days of a high lycopene monounsaturated fat rich and high lycopene carbohydrate
rich diets presented similar increase in serum lycopene concentration and a similar
reduction in serum total and LDL cholesterol.

The AIx after three weeks of regular chilli consumption was lower on the chilli diet
compared to the bland diet, but there was no significant difference in the overall effects
of GTN and salbutamol on endothelium-independent and -dependent vasodilation
between the two diets. Four weeks of iso-energetic weight maintenance chilli and bland
diets produced no significant differences in serum lipids, glucose, insulin, peripheral and
central blood pressure, AIx, SEVR or BMR. HR was lower after four weeks of chilli-
supplemented diet in men, but not in women. Serum collected after the chilli-
supplemented diet exhibited a lower rate of copper-induced oxidation compared to the
serum after the bland diet. Women, but not men, also showed a longer lag phase after the
chilli-supplemented diet compared to the bland diet. This was probably due to the higher
chilli/capsaicin and dihydrocapsaicin intake (per kg body weight) in women. In vitro
studies with capsaicin, dihydrocapsaicin (and curcumin) also exhibited a concentration
effect for the resistance to copper-induced serum lipid oxidation.

Results of the meal tests were surprising and exciting. The CAB meal (chilli-containing
meal after the bland diet, eaten on day 29 of the bland diet) and the CAC meal (chilli-
containing meal after the chilli diet, eaten on day 29 of the chilli diet) showed a lower
maximum increase in postprandial serum insulin and overall postprandial serum insulin response compared to the BAB meal (bland meal after the bland diet, eaten on day 22 of the bland diet). The probable reason for this ameliorated insulin profile was a small reduction in insulin secretion and a large increase in the hepatic insulin clearance. The correlation between insulin and SEVR indicated an increase in the myocardial perfusion after the CAC meal compared to the BAB meal. All these results were more pronounced after the CAC meal and in people with BMI \(\geq 26 \text{kg/m}^2 \). Contrary to popular belief and some previously published data, we did not observe a significantly higher energy expenditure (EE) after the CAB meal or the CAC meal compared to the BAB meal. In fact, a lower EE was observed in people with increased BMI on the CAC meal compared to the BAB meal. This effect was possibly the consequence of improved postprandial insulin profile and reduced sympathetic nervous system activity after the CAC meal.

The results from these investigations may have significance in improving serum lycopene concentrations, lipid profile (tomatoes and olive oil), postprandial insulin response (chilli) and increased resistance of serum to copper induced oxidation (chilli) and hence decreasing the risk of CHD, especially in people with increased BMI for whom the risk of cardiovascular morbidity and mortality is higher than in lean individuals. Together, the results from these studies not only advance our knowledge relating to the relationship between some foods and the CHD risk factors but provide an opportunity to combine olive oil, tomatoes and chillies with other foods and spices (as often used in curries) in an attempt to further investigate foods and cuisines that will minimise the various risk factors for CHD.