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ABSTRACT

We investigate the validity of the standard specification tests for assessing the exogeneity

of subvectors in the linear IV regression. Our results show that ignoring the endogeneity

of the regressors whose exogeneity is not being tested leads to invalid tests (level is not

controlled). When the fitted values from the first stage regression of these regressors are

used as instruments under the partial null hypothesis of interest, as suggested Hausman

and Taylor (1980, 1981), some versions of these tests are invalid when identification is weak

and the number of instruments is moderate. However, all tests are overly conservative and

have no power when the number of instruments increases, even for moderate identification

strength.
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1. Introduction

Exogeneity tests of the type proposed by proposed by Durbin (1954), Wu (1973), and

Hausman (1978), henceforth DWH tests, are widely used in applied work to decide whether

ordinary least squares (OLS) or instrumental variable (IV) methods is appropriate. It

is now well known that if the null hypothesis of interest is specified on the whole set of

supposedly endogenous regressors, DWH tests are valid even when instruments are weak

[see Staiger and Stock (1997), Hahn et al. (2010), Guggenberger (2010), and Doko Tchatoka

and Dufour (2011a, 2011b)]. However, their validity when testing for partial exogeneity is

unclear, especially when identification is weak.

Many economic questions often involve more than one supposedly endogenous variable,

but researcher may want to challenge the exogeneity of only a subset of them. This may be

particularly motivated by some economic theory. Furthermore, efficient estimation of model

parameters requires to use available instruments only for regressors that are endogenous.

Thus, assessing individual exogeneity of supposedly endogenous regressors is an important

issue.

In this paper, we focus on the linear IV regression and question the validity of two testing

practices, based on DWH type statistics, for assessing partial exogeneity hypotheses. The

first is the use of Sargan-Hansen C-type tests ignoring the endogeneity of the regressors

whose exogeneity is not being tested [see Chaudhuri and Rose (2009)]. The second is the

extension of DWH tests to partial exogeneity hypotheses, proposed by Hausman and Taylor

(1980, 1981). Theses procedures use the fitted values from the first stage regression of the

regressors whose exogeneity is not being investigated as instruments under the partial null

hypothesis of interest. Both practices are widely used in applied work.

In both cases, we examine the size and power of the corresponding tests through a

Monte Carlo experiment, allowing for the presence of weak instruments. We find that the

use of either C-tests or Hausman and Taylor (1980, 1981) extension may lead to misleading

conclusions even when identification strength is moderate.

The remainder of the paper is organized as follows. Section 2 formulates the model

and presents the statistical problem of interest. Section 3 analyze the behavior of the tests

through a Monte Carlo experiment. Conclusions are drawn in Section 4.
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2. Model, statistical problem and test statistics

We consider the following linear IV regression model

y = Y β +Xθ + u , (2.1)

Y = ZΠ+ υ, X = ZΓ+ ξ (2.2)

where y ∈ R
n is a vector of observations on a dependent variable, Y ∈ R

n×my and

X ∈ R
n×mx (my + mx = m ≥ 1) are two matrices of (possibly) endogenous explana-

tory variables, Z ∈ R
n×l is a matrix of exogenous instruments, u = (u1, . . . , un)

′ ∈ R
n is

the vector of structural disturbances, υ ∈ R
n×my and ξ ∈ R

n×mx are matrices of reduced

form disturbances, β ∈ R
my and θ ∈ R

mx are unknown structural parameter vectors, while

Π ∈ R
l×my and Γ ∈ R

l×mx are unknown reduced form coefficient matrices. Model (2.1)-

(2.2) can be modified to include exogenous variables Z1. If so, our results do not alter

qualitatively if we replace the variables that are currently in (2.1)-(2.2) by the residuals

that result from their projection onto Z1. We shall assume that the instrument matrix Z

has full-column rank l with probability one and l ≥ m.

The usual necessary and sufficient condition for identification of model (2.1)-(2.2) is

rank([Π, Γ]) = m. If [Π, Γ] is close not to have full rank, (β′, θ′)′ is not identifiable but

some of its linear combinations are ill-determined by the data, a situation often called “weak

identification” in this type of setup [see Andrews and Stock (2006), Dufour (2003)]. When

[Π, Γ] = 0, the instruments Z are irrelevant and (θ′, β′)′ is completely unidentified.

We will study in turn the problem of testing the partial exogeneity of Y , i.e. the

hypothesis

Hp
0 : cov(Y, u) = συu = 0 (2.3)

where the regressors X whose exogeneity is not being tested may be endogenous. Haus-

man and Taylor (1980) [see also Hausman and Taylor (1981, p.1389, footnote 10)] pro-

pose to assess Hp
0 via the standard DWH specification tests upon comparing the two stage

least squares estimator (β̂
′
0,2SLS, θ̂

′
0,2SLS)

′ obtained using [Y, X̂] as instruments, to those

(β̂
′
1,2SLS, θ̂

′
1,2SLS)

′ obtained from [Ŷ , X̂], where [Ŷ , X̂ ] = PZ [Y, X] and PZ = Z(Z ′Z)−1Z ′.
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This is mathematically equivalent1 to test the exogeneity of Y in model

y = Y β + X̂θ + e , (2.4)

Y = ZΠ+ υ. (2.5)

Which means that the corresponding DWH statistics can be written as a quadratic form

in the subvector of differences of the 2SLS estimates of β alone. An important question is

whether the tests obtained in such a way are still valid, especially when identification is weak.

The problem stems from the fact that when instruments are weak, X̂ is not independent of

u even in large-sample. So, using X̂ as instruments under Hp
0 may be problematic.

From (2.4)-(2.5), we can express β̂0,2SLS and β̂1,2SLS as: β̂0,2SLS =

(Y ′MX̂Y )−1Y ′MX̂y, β̂1,2SLS = (Ŷ ′MX̂ Ŷ )−1Ŷ ′MX̂y, where MX̂ = In − PX̂ . We

consider four alternative DWH type statistics written in the following unified formulation:

Wj = κj(β̂1,2SLS − β̂0,2SLS)
′Σ̂−1

j (β̂1,2SLS − β̂0,2SLS), j = 1, 2, 3, 4 (2.6)

Σ̂1 = σ̃2
2∆̂, ∆̂ = Ω̂−1

IV − Ω̂−1
LS , Σ̂2 = σ̃2Ω̂−1

IV − σ̂2Ω̂−1
LS , Σ̂3 = σ̃2∆̂, Σ̂4 = σ̂2∆̂,

Ω̂IV = Ŷ ′MX̂ Ŷ /n, Ω̂LS = Y ′MX̂Y/n, σ̃2 = (y − Y β̂1,2SLS)
′MX̂(y − Y β̂1,2SLS)/n,

σ̃2
2 = σ̂2 − (β̂1,2SLS − β̂0,2SLS)

′∆̂−1(β̂1,2SLS − β̂0,2SLS), κ1 = (n− 2my)/my

σ̂2 = (y − Y β̂0,2SLS)
′MX̂(y − Y β̂0,2SLS)/n, κi = n, j = 2, 3, 4.

The statistics in (2.6) differ only through the variance estimators of the errors in (2.4)-

(2.5) and the scaling factors κj . σ̂
2 and σ̃2 are the usual IV-based estimators (without

correction for degrees of freedom), while σ̃2
2 can be interpreted as an alternative IV-based

scaling factor. The statistic W1 is an extension of Wu (1973) T2-statistic. Wj (j ≥ 2)

are analogues to alternative Hausman (1978) type-statistics studied by Staiger and Stock

(1997), Guggenberger (2010), and Doko Tchatoka and Dufour (2011a, 2011b). The Sargan-

Hansen C-tests ignoring the endogeneity of X consist of replacing X̂ by X in (2.6), so that

β̂0,2SLS collapses to the OLS estimator of β in (2.1).

1See Baum et al. (2003) for further details.
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Following Hausman and Taylor (1980, 1981), Hp
0 is rejected if the corresponding statistic

is greater than the desired critical value of a χ2(my)-distribution. This however requires X̂

be independent of the structural error, which is not guaranteed when instruments are weak.

We shall now analyze the size and power of the tests through a Monte Carlo experiment,

in both strong and weak identification setups.

3. Simulation results

In each of the following experiments, data are generated from model (2.1)-(2.2) with three

endogenous regressors (Y : n× 2, W : n× 1) by setting

ui = (1 + ρ2υ1
+ ρ2υ2

+ ρ2ξ)
−1/2(ε1i + ρυ1

ε2i + ρυ2
ε3i + ρξε4i),

υi = [(1 + ρ2υ1
)−1/2(ρυ1

ε1i + ε2i), (1 + ρ2υ2
)−1/2(ρυ2

ε1i + ε3i)],

ξi = (1 + ρ2ξ)
−1/2(ρξε1i + ε4i), (ε1i, ε2i, ε3i, ε4i)

′ ∼ IIDN (0, I4) (3.7)

for all i = 1, . . . , n, ρυ1
∈ {−.9, −.2, 0, .3, .8} , ρυ2

= ρυ1
/
√
3 and ρξ = 0.4. The re-

sults are qualitatively the same for alternative choices of ρξ and ρυ2
. The exogeneity of

Y is then expressed as Hp
0 : ρυ1

= 0. Z contains l ∈ {3, 20} instruments each generated

IIDN(0, 1) and is kept fix within experiment. The true value of (β′, θ)′ is (2, −3, 1/2)′

and [Π, Γ] is chosen as: [Π, Γ] =
√

µ2

n‖ZC‖Π0, where Π0 is obtained by taking the first

three columns of the identity matrix of dimension l, C is an l × 1 vector of ones, and

µ2 ∈ {0, 10, 1000, 10000} is the concentration parameter that characterizes the strength of

the instruments. The values µ2 ≤ 613 correspond to weak instruments while µ2 > 613 is

for strong instruments [see Hansen et al. (2008) ]. In particular, when µ2 = 0, the instru-

ments are irrelevant and (β′, θ)′ is completely unidentified. The simulations are run with

sample sizes n = 100 and 500. The number of replications is N = 10000 and the empirical

rejections of the statistics are computed using the 95% critical value value of χ2(2).

Table 1 presents the results. In the first column, we report the statistics while the

second column reports the number of instruments. In the other columns, for each value of

endogeneity ρυ1
and instrument quality µ2, the rejection frequencies are reported.

The first part of the table deals with the setup where the endogeneity of X is ig-
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nored. As seen, all tests are seriously size distorted when identification is strong [column

ρυ1
= 0, µ2 ∈ {1000, 10000}]. The size distortions persists even for n = 500. When in-

struments are irrelevant or weak [column ρυ1
= 0, µ2 ∈ {0, 10}], W1 and W4 are still size

distorted but W2 and W3 are overly conservative. In all cases, the maximal size distortion

of the tests approaches 40% with 3 instruments and around 50% with 20 instruments.

The second part of the table corresponds to the setup by Hausman and Taylor

(1980,1981), where [Y, X̂ ] is used as instruments under Hp
0. Two observations emerge

in this case depending on the sample size. Firstly, when n = 100, all tests have correct

level when identification is very strong [column ρυ1
= 0, µ2 = 10000], but are conservation

for moderate identification strength [column ρυ1
= 0, µ2 = 1000]. However, when identi-

fication is weak, W1 and W4 are size distorted when l = 3 but overly conservative when

l = 20. At the same time, W2 and W3 are overly conservative in all cases. Secondly, when

n = 500, all tests are conservative when identification is strong or moderate. With weak in-

struments, W1 and W4 are still size distorted when l = 3, with maximal distortion around

12%. This suggests that the null asymptotic distributions of the statistics is far from a

χ2(2)-distribution, even with moderate identification strength. Moreover, we can see that

even when µ2 = 1000 (moderate identification), the tests have no power when l = 20 and

ρυ1
= −.2; .3. The sample realizations of the statistics are often close to zero even for a

relatively high endogeneity. Overall, the use of DWH tests to assess partial exogeneity hy-

potheses, as suggested Hausman and Taylor (1980,1981), may be misleading if identification

is not very strong. The use of C-type tests, as described here, is inappropriate and should

be avoided.
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Table 1. Size and power at nominal level 5%

Rejections when the endogeneity of X is ignored

n = 100
ρ1 = −.9 ρ1 = −.2 ρ

1
= 0 ρ1 = .3 ρ1 = .8

Statistics k2 ↓ µ2 → 0 10 1000 10000 0 10 1000 10000 0 10 1000 10000 0 10 1000 10000 0 10 1000 10000
W1 3 31.1 65.8 89.6 87.4 30.0 42.9 79.5 96.7 29.6 38.6 37.6 39.3 29.9 46.1 94.2 99.7 31.6 62.7 93.1 99.4
W2 3 1.5 4.9 100.0 100.0 0.8 1.7 74.7 96.0 0.7 1.7 31.2 35.5 1.0 2.2 92.4 99.7 1.6 6.8 100.0 100.0
W3 3 1.8 5.9 100.0 100.0 1.0 2.2 76.8 96.5 0.9 2.2 33.7 38.0 1.3 2.6 93.1 99.7 2.0 8.1 100.0 100.0
W4 3 40.0 85.5 100.0 100.0 38.1 53.3 79.1 96.6 37.4 49.0 37.1 38.4 37.6 58.5 94.2 99.7 40.3 96.3 100.0 100.0

W1 20 9.0 12.7 99.3 100.0 7.2 7.8 38.9 80.2 7.0 7.1 17.1 13.7 7.4 8.1 54.1 95.9 8.7 19.0 99.5 100.0
W2 20 3.4 4.7 98.8 100.0 2.0 2.1 29.7 76.3 1.7 1.9 11.3 11.4 2.1 2.4 44.4 94.7 3.1 8.8 99.2 100.0
W3 20 4.2 5.9 99.0 100.0 2.7 2.8 32.6 78.7 2.5 2.4 13.2 12.7 2.8 3.2 48.1 95.5 3.9 10.5 99.3 100.0
W4 20 8.6 12.1 99.3 100.0 6.9 7.5 38.0 79.4 6.6 6.8 16.6 13.2 7.1 7.7 53.3 95.7 8.4 18.3 99.5 100.0

n = 500
W1 3 35.6 63.3 99.3 99.8 34.2 40.6 80.3 99.8 33.3 39.3 50.2 32.7 33.6 44.3 95.5 100.0 35.0 80.0 93.1 100.0
W2 3 1.4 3.1 99.4 100.0 0.7 1.4 73.0 99.8 0.7 1.1 39.8 31.3 1.0 1.4 92.6 100.0 1.5 4.5 99.5 100.0
W3 3 1.5 3.2 99.4 100.0 0.7 1.5 73.4 99.8 0.7 1.1 40.4 31.6 1.0 1.4 92.8 100.0 1.5 4.6 99.5 100.0
W4 3 39.5 70.4 100.0 100.0 37.7 44.9 80.3 99.8 36.7 43.3 50.1 32.6 37.1 48.8 95.6 100.0 38.9 90.9 100.0 100.0

W1 20 8.0 10.1 95.7 100.0 6.6 6.8 30.7 91.2 6 6.7 20.8 29.6 6.9 7.4 48.9 99.7 7.8 15.0 97.8 100.0
W2 20 3.0 3.7 93.9 100.0 1.7 1.9 21.5 90.3 1.4 1.7 13.2 27.2 1.8 1.8 38.4 99.6 2.8 6.7 97.0 100.0
W3 20 3.1 3.9 93.9 100.0 1.7 2.0 22.1 90.5 1.6 1.8 13.6 27.8 2.0 1.9 39.1 99.6 2.9 6.9 97.1 100.0
W4 20 7.9 10.0 95.7 100.0 6.5 6.7 30.5 91.2 5.9 6.6 20.7 29.5 6.8 7.3 48.8 99.7 7.7 14.8 97.8 100.0

Rejections when [Y, X̂] is used as instruments under Hp

0

n = 100
ρ1 = −.9 ρ1 = −.2 ρ

1
= 0 ρ1 = .3 ρ1 = .8

Statistics k2 ↓ µ2 → 0 10 1000 10000 0 10 1000 10000 0 10 1000 10000 0 10 1000 10000 0 10 1000 10000
W1 3 7.3 18.3 99.9 100.0 8.1 11.1 39.4 75.4 8.5 11.8 3.0 5.2 7.4 11.2 81.5 98.1 3.5 17.8 100.0 100.0
W2 3 0.3 1.3 100.0 100.0 0.3 0.8 29.0 71.3 0.3 0.7 1.7 3.8 0.3 0.7 72.2 97.3 0.2 1.0 100.0 100.0
W3 3 0.3 1.7 100.0 100.0 0.4 0.8 33.0 74.1 0.3 0.8 2.2 4.7 0.4 0.9 76.2 97.9 0.2 1.3 100.0 100.0
W4 3 9.1 23.1 100.0 100.0 10.8 14.2 38.3 74.4 10.9 15.0 2.9 4.8 9.5 14.8 80.6 98.0 4.3 21.9 100.0 100.0

W1 20 17.8 20.2 99.7 100.0 0.3 0.4 13.9 56.9 0.0 0.1 1.5 5.2 0.6 0.9 25.4 90.6 13.3 15.7 99.2 100.0
W2 20 6.9 8.1 99.1 100.0 0.1 0.1 7.9 51.4 0 0 0.7 3.71 0.2 0.2 15.9 88.0 4.9 5.7 97.8 100.0
W3 20 8.7 10.5 99.3 100.0 0.1 0.1 9.7 54.8 0 0 0.9 4.7 0.3 0.3 19.1 89.6 6.4 7.5 98.3 100.0
W4 20 16.8 19.4 99.6 100.0 0.2 0.4 13.3 55.8 0 0.1 1.3 4.9 0.6 0.8 24.5 90.1 12.6 14.8 99.2 100.0

n = 500
W1 3 7.5 14.2 100.0 100.0 9.0 10.6 18.6 98.5 9.39 10.7 1.6 1.2 8.0 10.9 58.0 100.0 3.7 11.2 100.0 100.0
W2 3 0.3 0.7 98.1 100.0 0.2 0.5 8.6 98.2 0.3 0.3 0.7 1.0 0.3 0.5 35.4 100.0 0.2 0.5 98.4 100.0
W3 3 0.3 0.7 98.3 100.0 0.2 0.6 9.0 98.4 0.3 0.3 0.8 1.1 0.3 0.5 36.9 100.0 0.2 0.5 98.5 100.0
W4 3 8.5 15.8 100.0 100.0 10.1 11.9 18.4 98.5 10.5 12.1 1.6 1.1 9.0 12.2 57.7 100.0 4.2 12.4 100.0 100.0

W1 20 5.7 6.9 93.1 100.0 0.0 0.0 0.3 69.3 0 0 0 0.5 0.0 0.0 2.7 99.1 2.3 2.5 89.5 100.0
W2 20 1.4 1.8 80.3 100.0 0.0 0.0 0.1 64.8 0 0 0 0.4 0.0 0.0 0.8 98.8 0.5 0.6 75.0 100.0
W3 20 1.5 1.9 81.0 100.0 0.0 0.0 0.1 65.6 0 0 0 0.4 0.0 0.0 0.9 98.8 0.6 0.7 75.9 100.0
W4 20 5.5 6.8 93.0 100.0 0.0 0.0 0.3 69.0 0 0 0 0.5 0.0 0.0 2.6 99.1 2.3 2.4 89.4 100.0
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4. Concluding remarks

In this paper, we question the validity of the use of standard DWH specification tests for

assessing partial exogeneity hypotheses. Our results show that these tests are invalid (level

is not controlled) if the endogeneity of the regressors whose exogeneity is not being tested

is ignored within inference. When the fitted values from the first stage regression of these

regressors are used as instruments under the subset null hypothesis of interest, we find

that some versions of the tests are invalid when identification is weak and the number of

instruments is relatively moderate. However, all tests are overly conservative and have no

power when the number of instruments increases, even for moderate identification strength.

So, applying them to assess partial exogeneity hypotheses, as it is often the case in applied

work, may be misleading. This underscores the importance to develop tests that do not

exhibit these problems when testing for partial exogeneity.
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