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I

ABSTRACT

We provide a generalization of the Anderson-Rubin (AR) procedurénference on parameters
which represent the dependence between possibly endogenousagaplavariables and distur-
bances in a linear structural equati@mdogeneity parametgrsWe focus on second-order depen-
dence and stress the distinction betwesgressiorandcovariance endogeneity paramete&uch
parameters have intrinsic interest (because they measure the effemirombn factors” which
induce simultaneity) and play a central role in selecting an estimation methodiflectteey deter-
mine “simultaneity biases” associated with least-squares methods). We @lbisarvendogeneity
parameters may not identifiable and we give the relevant identification camslitid/e develop
identification-robust finite-sample tests for joint hypotheses involving ttralcand regression en-
dogeneity parameters, as well as marginal hypotheses on regresdmgeanity parameters. For
Gaussian errors, we provide tests and confidence sets based cardtgupe Fisher critical val-
ues. For a wide class of parametric non-Gaussian errors (possiy-teeled), we also show that
exact Monte Carlo procedures can be applied using the statistics causidés a special case,
this result also holds for usual AR-type tests on structural coeffici€atscovariance endogeneity
parameters, we supply an asymptotic (identification-robust) distributionahth&ests for partial
exogeneity hypotheses (for individual potentially endogenous exjgligneaariables) are covered as
instances of the class of proposed procedures. The proposextipres are applied to two empiri-
cal examples: the relation between trade and economic growth, and the wiideigd problem of
returns to education.

Key words: Identification-robust confidence sets; endogeneity; AR-type statstifection-based
techniques; partial exogeneity test.

Journal of Economic Literature classification: C3; C12; C15; C52.
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1. Introduction

Instrumental variable (IV) regressions are typically motivated by thetfat “explanatory vari-
ables” may be correlated with the error term, so least-squares methods iggédl nconsistent
estimators of model coefficients. Such IV parameter estimates can be itedrasameasures of the
relationship between variables, once the “effect” of common “driving™éxogenous”) variables
has been eliminated. Even though coefficients estimated in this way may hawsiinmigrinter-
pretations from the viewpoint of economic theory, inference on suchctral parameters” raises
identification difficulties. Further, it is well known that IV estimators may beyverprecise, and
inference procedures (such as tests and confidence sets) carlyeuhigpliable, especially when
instruments are weakly associated with model variables (weak instrumehishas led to a large
literature aimed at producing reliable inference in the presence of wealrirents; see the reviews
of Stock, Wright and Yogo (2002) and Dufour (2003).

Research on weak instruments has focused on inference for thewoeffiof endogenous vari-
ables in so-called “IV regressions”. This leaves out the parameterdvgpiecifically determine
simultaneity features, such as the covariances between endogentarsagxy variables and dis-
turbances. These parameters can be of interest for several se&ssh) they provide direct mea-
sures of the importance of “common factors” which induce simultaneity. Sagtbrfs are in a sense
“left out” from “structural equations”, but they remain “hidden” in “sttural disturbances”. For
example, in a wide set of economic models, they may represent unobsateetvariables, such
as “surprise variables” which play a role in models with expectations [see B8977), Dufour
and Jasiak (2001)]Secondthe simultaneity covariance (or regression) coefficients determine the
estimation bias of least-squares methods. Information on the size of suels bas be useful in
interpreting least-squares estimates and related statigtitsd, information on the parameters of
hidden variables (which induce simultaneity) may be important for selectingtistaltisrocedures.
Even if instruments are “strong”, it is well known that IV estimators may besictarably less effi-
cient than least-squares estimators; see Kiviet and Niemczyk (200DakadT chatoka and Dufour
(2011). Indeed, this may be the case even when endogeneity is piéaamtriable is not correlated
(or only weakly correlated) with the error term, instrumenting it can lead tbkzidficiency losses
in estimation. Assessing when and which variables should be instrumentednp@mant issue for
the estimation of structural models.

In this paper, we stress the view that linear structural models (IV regregscan be interpreted
as regressions with missing regressors. If the missing regressoréwieided, there would be no
simultaneity bias, so no correction for simultaneity — such as IV methods — weutééded. This
feature allows one to define a model transformation that maps a linear sadueturation (with
simultaneity) to a linear regression where all the explanatory variablesnaeralated with the
error term. We call this transformed equation tmthogonalized structural equationterestingly,
the latter is not a reduced-form equation. Rather, the orthogonalizetistabequation still involves
the structural parameters of interest, but also inclegetgeneity parametevghich are “hidden”
in the original structural equation. We focus here on this orthogonalizedtsral equation.

The problem stems from the fact that the missing regressors are unetbs&wespite this dif-
ficulty, we show that procedures similar to the one proposed by AndemsdriRubin (1949, AR)



can be applied to the orthogonalized equation. This allows one to make icégantly on both
the parameters of the original structural equation and endogeneity garanievo types of endo-
geneity parameters are consideresfjression endogeneity parametarsicovariance endogeneity
parameters Under standard conditions, where instruments are strictly exogenousreors are
Gaussian, the tests and confidence sets derived in this way are exa&cproffvsed methods do
not require identification assumptions, so they can be describiggmriification-robust For more
general inference on transformations of the parameters of the orthliggmh structural equation,
we propose projection methods, for such technigues allow for a simple $ianitgrle distributional
theory and preserve robustness to identification assumptions.
To be more specific, we consider a model of the form

y=YB+Xiy+u

wherey is an observed dependent variableis a matrix of observed (possibly) endogenous re-
gressors, ani; is a matrix of exogenous variables. We observe that AR-type procedoay
be applied to test hypotheses on the transformed pararfiete3 + a, where a represents re-
gression coefficients afi on the reduced-form errors of (regression endogeneity paramefers
Identification-robust inference oaitself is then derived by exploiting the possibility of making
identification-robust inference of. Then, inference on covariances (say,) betweenu andY
(covariance endogeneity paramefecan be derived by considering appropriate linear transforma-
tions ofa.
We stress that regression and covariance endogeneity parameteuglk theoretically related
— play distinct but complementary roles: regression endogeneity paramepeesent the effect of
reduced-form innovations oy while covariance endogeneity parameters determine the need to in-
strument different variables M. Whenoy, =0, Y can be treated as exogenous (so IV estimation
is not warranted). So-called exogeneity tests typically test the hypotbiggis 0. It is easy to see
that oy, = 0 if and only ifa= 0 (provided the covariance matrix between reduced-form errors is
nonsingular), but the relationship is more complex in other cases. In thés, ye emphasize cases
wherea # 0. Due to the failure of the exogeneity hypothesis, the distributions of varigtististis-
tics are much more complex. Interestingly, it is relatively easy to produce-fiaiteple inference
ona, but not onay,. So, foroyy, we only propose asymptotically valid tests and confidence sets.
By allowing a # 0 (or oy, # 0), we extend earlier results on exogeneity tests, which focus on
the null hypothesisl; : a= 0. The literature on this topic, is considerable; see, for example, Durbin
(1954), Wu (1973, 1974, 1983a, 1983b), Revankar and Hart@y3)l Farebrother (1976), Haus-
man (1978), Revankar (1978), Dufour (1979, 1987), Hwang@),98ariya and Hodoshima (1980),
Hausman and Taylor (1981), Spencer and Berk (1981), Nakamdr&akamura (1981), Engle
(1982), Holly (1982), Reynolds (1982), Smith (1984), Staiger andkS{b@97), Doko Tchatoka
and Dufour (2010, 2011). By contrast, we consider here the probfaesting any value oh (or
ovy) and build confidence sets for these parameters. By allowing weak ingttsimes extend the
results in Dufour (1987) where Wald-type tests and confidence sefg@wesed for inference on
a andoyy, under assumptions which exclude weak instruments. Finally, by considafergnce
on a and oy, we extend a procedure proposed in Dufour and Jasiak (2001)ftaencte on the
aggregate paramet@r= 3 + a (but nota or oy,) in the context of a somewhat different model.



On exploiting results from Dufour and Taamouti (2005, 2007), we suapstytical forms for
the proposed confidence sets, and we give the necessary anéesuffienditions under which
they are bounded. These results can be used to assess partialeityoggpotheses even when
identification is deficient or weak.

In order to allow for alternative assumptions on error distributions, wevghat the proposed
AR-type statistics are pivotal as long as the errors follow a completely spe:difstribution (up to
an unknown scale parameter), which may be non-Gaussian. Undecasuditions, exact Monte
Carlo tests can be performed without a Gaussian assumptions [as desoribefour (2006)].
On allowing for more general error distributions and weakly exogenaatsuiments (along with
standard high-level asymptotic assumptions), we also show that the ptbposcedures remain
asymptotically valid and identification-robust.

Finally, we apply the proposed methods to two empirical examples, previoossidered in
Dufour and Taamouti (2007): a study of the relationship between tradecaonomic growth
[Frankel and Romer (1999)], and the widely considered example afneto education [Bound,
Jaeger and Baker (1995)].

The paper is organized as follows. Section 2 formulates the model cosdid&ection 3
presents the finite-sample theory for inference on regression engibgparameters. Section 4
discusses asymptotic theory and inference for covariance endogpagiyeters. Section 5 illus-
trates the theoretical results through two empirical applications: a model @l#t®nship between
trade and growth model, and returns to schooling. We conclude in Section@&sRre presented
in appendix.

Throughout the papety, stands for the identity matrix of orden. For any full rankT x m
matrix A, P(A) = A(A'A)~1A is the projection matrix on the space spanned by the columas of
M(A) = I — P(A), andvedA) is the (Tm) x 1 dimensional column vectorization & For any
squared matriXB, the notationB > 0 means thaB is positive definite (p.d.), whil& > 0 means

it is positive semidefinite (p.s.d.). Finally— " stands for convergence in probability while %
" is for convergence in distribution. Finally{A|| is the Euclidian norm of a vector or matrixe.,
Al = ftr (A A)]2.
2. Framework: endogeneity parameters and their identification
We consider a standard linear structural equation of the form:

y=YB+Xey+u (2.1)

whereyis aT x 1 vector of observations on a dependent varidble,aT x G matrix of observations
on (possibly) endogenous explanatory varialjf@s> 1), X; is aT x k; full-column-rank matrix of
strictly exogenous variables, = [uy,..., ur]" is a vector of structural disturbancg$,andy are
G x 1 andk; x 1 unknown coefficient vectors. Furth&rsatisfies the model:

Y = XM +V = Xq M1+ XolTo +V (2.2)



whereX; is aT x kp matrix of observations on exogenous variables (instrumekKts}, [Xi, X2]
has full-column rankk = k; + ko, Miand I, arek; x G andk, x G coefficient matrices[1 =
[y, 5], andV = V4,..., V]  is aT x G matrix of reduced-form disturbances. Equation (2.1) is
the “structural equation” of interest, while (2.2) represents the “reditaren” for Y. On substituting
(2.2) into (2.1) and reexpressiygn terms of exogenous variables, we get the reduced form for

y=Xim +Xom+V (2.3)

whererm; = y+ M3, my =116, andv=Vp+u=|vq,...,vr|.

When the errorsi andV have finite zero means (although this assumption could easily be re-
placed by another “centering assumption”, such as zero medians) uklenesessary and sufficient
condition for identification of3 in (2.1)-(2.2) is:

rank(,) = G. (2.4)

If [, =0, the instrumentX; are irrelevant, an@ is completely unidentified. If ¥ rank(I1;) < G,

B is not identifiable, but some linear combinations of the elemenBsart identifiable [see Dufour
and Hsiao (2008)]. If1 is close not to have full ranle[g, if some eigenvalues d1,/1, are close to
zero], some linear combinations Bfare ill-determined by the data, a situation often called “weak
identification” in this type of setup [see Dufour (2003)].

2.1. Identification of endogeneity parameters

We now wish to represent the fact thaandV are not independent and may be correlated, taking
into account the fact that structural parameters (sucf asdy) may not be identifiable. In this
context, it is important to note that the “structural erroy’is not uniquely determined by the data
when identification conditions fof and y do not hold. For that, it will be useful to consider
two alternative setups for the disturbance distribution: (A) in the first tredisturbance vectors
(u, V)" have common finite second momerg#ctural homoskedasticity(A) in the second one,
we allow for a large amount of heterogeneity in the distributions of redfmexd-errors (educed-
form heterogeneily The second setup is clearly more appropriate for practical worlkyarwlish to
go as far as possible in that direction. But it will be illuminating to considertfiistmore restrictive
assumption.

In setup A, we suppose that:

the vectord); = (w, ), t =1,..., T, all have mean zero and finite covariance matrix  (2.5)

2 /
_ " _ Oy Owy
u= E[UtUt] = [ ove Sy ] (2.6)
wherezy = E [Vt\/t'] is nonsingular. In this case, the reduced-form eMdrs: (v, V), t=1,..., T,
also have mean zero and covariance matrix

2
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where
Ovy = EMW] = EM(WB+u] = SyB+0vu, 05 =05+ B3 B+2B'0vu.  (2.8)

The covariance vectary, indicates which variables ivf are “correlated” withu;, so it provides a
natural measure of the “endogeneity” of these variables. Note, hovtkaeoy,, is not identifiable
wheng is not (because, in this case, the “structural ertpis not uniquely determined by the data).
In this context, it will be illuminating to look at the following two regressions: (19 timear
regression oty on,
uw=Vat+ea, t=1...T, (2.9)

wherea = 2\710\/“ andE[Via] = 0 for allt; and (2) the linear regressionafon ,
vi=Wb+n,t=1,.,T, (2.10)
whereb = 3, 1oy, andEMn,] = 0 for allt. Itis easy to see that
ow=23va, 03=o02+d3va=02+0{,5 o (2.11)

whereE[€f] = a2 for all t. This entails thata = 0 if and only if oy, = 0, so the exogeneity of can

be assessed by testing whether 0. There is however no simple match between the components of

aandoy, (unless2y is a diagonal matrix). For example,af= (&, &,)" andoyy = (0V,4, Oy )’

wherea; andoy have dimensiols; < G, a; = 0 is not equivalent t@y = 0. In such a setup,

we calla the “regression endogeneity parameter” anglthe “covariance endogeneity parameter”.
As long as the identification condition (2.4) holds, baot, anda are identifiable. This is not

the case, however, when (2.4) does not hold. By contrast, the semmesefficientb is always

identifiable, because it is uniquely determined by the second moments oécethren errors. It is

then useful to observe the following identity:

b=, toyy= 2,1 (VB + ovy) =B +a. (2.12)

In other words, the surfi + a is equal to the regression coefficientwpfonV;. Even though3 and
amay not be identifiable, the sup+ a is identifiable. Further, for any fixe@ x 1 vectorw, Wb is
identifiable, and the identities

wa= V\/b—V\/B, Oyy= 2va (2.13)

along with the invertibility of2y, entail the following equivalences:

B is identifiable < ais identifiables gy, is identifiable; (2.14)
w B is identifiable < wais identifiables w3, oy, is identifiable . (2.15)

In particular, it is interesting to observe a simple identification correspasdestween the compo-
nents of$ anda:
a; is identifiable< B; is identifiable (2.16)

fori =1,..., G. In other words, the identification conditions fBranda are identical. In con-
trast, the equivalencewa/oy, is identifiable< w 3 is identifiable] and @y is identifiables B; is



identifiable]do not holdin general. Below, we will see that inferencelmoan be obtained through
standard linear regression methods, so that this can be combined with i@éotificobust inference
on 3 in order to obtain identification-robust inference on endogeneity parasnete

The setup (2.5) - (2.6) requires that the reduced-form disturbafices 1, ..., T, have identical
second moments. In many practical situations, this may not be approprigeejaly in a limited-
information analysis that focuses on the structural equation of interd3t (@ther than the marginal
distribution of the explanatory variabl¥s To allow for more heterogeneity among the observations
in'Y, we can however directly assume that:

u=Va+e, (2.17)
e has mean zero and is uncorrelated witandX , (2.18)

for some fixed vectoa in R€ (setup B). Later on, however, we shall consider setups where this
assumption is modified, for example in order to allow for cases whdes not have finite first or
second moments. There is no further restriction on the distributivnsfch as identical covariance
matrices[E(VtVt') = 2y for all t]. An attractive feature of this assumption is that it remains “agnos-
tic” concerning the distribution df. In particular, the rows 0¥ need not be identically distributed
(for example, arbitrary heteroskedasticity is allowed) or independentachy the assumption of
finite second moments fa; V andX — entailed by the orthogonality condition (2.18) — can be re-
laxed if it is replaced by a similar assumption that does not require the exésténeoments [such
as independence betweerand (V, X)|. Clearly, (2.5) - (2.6) is a special case of (2.17). We will
see below that finite-sample inference on model parameters remains possligiéhe assumptions
(2.17)-(2.18).

In view of (2.17), equation (2.1) can be viewed as a regression modehvigtsing regressors.
On substituting (2.17) into (2.1), we get:

y=YB+X1y+Va+e (2.19)

wheree is uncorrelated with all the regressors. Because of the latter propextgallv(2.19) the
orthogonalized structural equatiosssociated with (2.2), anelthe orthogonalized structural dis-
turbancevector. This equation contains the parameters of the original structwratieq as regres-
sion coefficients, plus the regression endogeneity pararacidfe see thah represents the effects
of the latent variabl&/. Even though (2.19) is a regression equation [in the sense that als+egre
sors(Y, X3, V) are orthogonal to the disturbance veahiit is quite distinct from the reduced-form
equation (2.3) foy.

The identification ofa can be studied through the orthogonalized structural equation. Using the
reduced form (2.2), we see that

y = YB+Xiy+ (Y —Xilli—Xollp)a+e
= YO+ Xqmm + Xom, + € (2.20)

wheref = B+ a, i} = y— Na, 11, = —[,a, andeis uncorrelated with all the regressg¥s X; and
X2). Equation (2.20) is thus a regression equation obtained by additg the original structural



equation or, equivalently, by addingto the reduced form (2.3) for. We will call equation (2.20)
the extended reduced forassociated with (2.2). As soon as the ma#ix [Y, X1, Xo] has full-
column rank with probability one, the parameters of equation (2.20) are i@éteifi This is the
case in particular fof = 3 + a (with probability one) wheZ has full-column rank with probability
one. This rank condition holds in particular when the matrixas full column rank with probability
one (conditional orX), e.g. if its distribution is absolutely continuous. This entails again thist
identifiable if and only3 is identifiable, and similarly betweaxa andw'§ for anyw € RC.
This establishes the following identification lemma éor

Lemma 2.1 IDENTIFICATION OF REGRESSION ENDOGENEITY PARAMETERS Under the as-
sumptiong2.2), (2.3) and (2.17), suppose the matri, X;, X] has full column rank with proba-
bility one. Then &- (3 is identifiable, and the following two equivalences hold:

ais identifiable= S is identifiable ; (2.21)
for any we R®, wa is identifiable= W 3 is identifiable (2.22)

The decomposition assumption (2.17) can also be formulated in terms of theedeftum
disturbancer [as in (2.10)] rather than the structural disturbaoce

v=Vb+n (2.23)

for some fixed vectob in R®, where each element @f has mean zero and is uncorrelated with
Vand X, again without any other assumption on the distributiow ofThis means that the linear
regressionss =V/b+ny, t,,..., T, can all be written in terms of the same coefficient vedtor
The latter is uniquely determined (identifiable) as soon as the mathias full column rank (with
probability one), so the identification @ is irrelevant. Even though conditions (2.17) and (2.23)
look quite different (because the dependent variable is not the sarag)ith in fact equivalent in
the context of the model we study here. This can be seen by rewriting dheed form (2.3) as
follows:

y = Xam+Xom+V = Xo(y+ M1B) +Xo(M23) +Vb+n
= (XolMl+XolM2)B +X1y+Vb+n
= YB+Xy+V(b—B)+n. (2.24)

Through matching the latter equation with the structural form (2.1), we get
u=V(b-8)+n (2.25)

provided]Y, X;] has full-column rank. Sincg andV are uncorrelated, this entails that (2.17) holds
with a=b— 8 ande=n. Conversely, under the assumption (2.17), we have from the reduaed fo
(2.3):

v=VpB+u=V(B+a)+e (2.26)

which is equivalent to (2.23) with = 8 +aandn = e. We can thus state the following lemma.



Lemma 2.2 EQUIVALENCE BETWEEN STRUCTURAL AND REDUCEBFORM ERROR DECOMP®
SITIONS. Under the assumption®.2) and (2.3), suppose the matrify, X3, Xo] has full column
rank with probability one. Then the assumptid@sl?7) and (2.23) are equivalent with b= f +a
andn =e

The identityn = e entails that the residual vector from the regression ohV is uniquely
determined (identifiable) eventufitself may not be. The orthogonalized structural equation (2.19)
may thus be rewritten as

y = YB+Xy+V(b-B)+n
= (XMB+Xy+Vb+n (2.27)

whereb is a regression vector between two reduced-form disturbajvcessV) andn the corre-
sponding error. This shows clearly that different regression exrteity parametera=b— 3 are
obtained by “sweepingP over its identification set.
Under the general assumption (2.17), covariance endogeneity parametg depend oh.
Indeed, it is easy to see that
EMu] =EMV Ja= ovu (2.28)

which may depend onif E [Vt\/t’] does. However, identification of the parameteysg; remains de-
termined by the identification &, whenever the reduced-form covariance (which are parameters of
reduced forms) are identifiable. Of course, inference on covar@amibegeneity parameters requires
additional assumptions. Indeed, we will see below that finite-sample idemethods can be de-
rived for regression endogeneity parameters under the “weak assnsip(2.17)-(2.18), while
only asymptotically justified methods will be proposed for covariance emuntyeparameters. In
particular for covariances we will focus on the case wheyg does not depend dn(gyy: = Owy

for all t).

2.2. Statistical problems

In this paper, we consider the problem of testing hypotheses and builnliriglence sets for regres-
sion endogeneity paramete@) and covariance endogeneity parameters,), allowing for the
possibility of identification failure (or weak identification). We develop infexe procedures for
the full vectorsa and gy, as well as linear transformations of these paramet&@andw gy,. In
view of the identification difficulties present here, we emphasize methodghiich a finite-sample
distributional theory is possible [see Dufour (1997, 2003)], at leattgly.

In line with the above discussion on identification of endogeneity parametergbserve that
inference ora can be tackled more easily than inferenceggn, so we study this problem first. The
problem of testing hypotheses of the form

Ha(ao) :a=ag (2.29)

can be viewed as an extension of the classical Anderson and Rubi®, AR problem on testing
Hg(Bo) : B = Bo. There is, however, an additional complication: the variable not observable.



For this reason, substantial adjustments are required. To achieverpospuwe propose a strategy
that builds on two-stage confidence procedures [Dufour (199@)gtion methods [Dufour (1990,
1987), Abdelkhalek and Dufour (1998), Dufour and Jasiak (20DWLfour and Taamouti (2005)],
and Monte Carlo tests [Dufour (2006)].

Specifically, in order to build a confidence set with level & for a, choosea; anda; such
thatO<a=0a;+a,< 1 0< a1 <1andO< a, < 1. We can then proceed as follows:

1. we build an identification-robust confidence set with leveld; for ; various procedures
are already available for that purpose; in view of the existence of a Saitgple distributional
theory (as well as computational simplicity), we focus on the Anderson abthR1949, AR)
approach; but alternative procedures could be exploited for thabpet

2. we build an identification-robust confidence set for the $um 3 + a, which happens to be
an identifiable parameter; we show this can be done easily though simplssiegrmethods;

3. the confidence sets f@@ and 8 are combined to obtain a simultaneous confidence set for
the stacked parameter vectpr= (3, 8')’; by the Boole-Bonferroni inequality, this yields a
confidence set fop with level 1— a (at least), as in Dufour (1990);

4. confidence sets fa = 6 — B and any linear transformatiow’'a may then be derived by
projection; these confidence sets have leveld ;

5. confidence sets fary, andw gy, can finally be built on exploiting the relationship,, =
2ya.

For inference o, we develop a finite-sample approach which remains valid irrespective of a
sumptions on the distribution & In addition, we observe that the test statistics used for inference
on 3 [the AR-type statistic] an@ enjoy invariance properties which allow the application of Monte
Carlo test methods: as long as the distribution of the emrdssspecified up to an unknown scale
parameter, exact tests can be performe@ amd6 through a small number of Monte Carlo simula-
tions [see Dufour (2006)]. For inference on both regression anarimmce endogeneity parameters
(aandoyy), we also provide a large-sample distributional theory based on starglargtotic as-
sumptions which relax various restrictions used in the finite-sample theorprépbsed methods
do not make identification assumptions @neither in finite samples or asymptotically.

3. Finite-sample inference for regression endogeneity parameters

In this section, we study the problem of building identification-robust testscamfidence sets
for the regression endogeneity parametérom a finite-sample viewpoint. Along with the basic
model assumptions (2.2) - (2.3), we suppose that (2.17) and the followsuwgrgotion on the error
distribution hold.

1Such procedures include, for example, the methods proposed byekjeit (2002) or Moreira (2003). No finite-
sample distributional theory is, however, available for these methodhefuthese are not robust to missing instruments;
see Dufour (2003) and Dufour and Taamouti (2007).



Assumption 3.1 CONDITIONAL SCALE MODEL FOR THE STRUCTURAL ERROR DISTRIBUTDN.
The conditional distribution of u given % [X1, Xp] is completely specified up to an unknown scalar
factor,i.e.

ulX~ao(X)u (3.1)

where o (X) is a fixed function of X, and has a completely specified distributiowhich may
depend on X

Assumption 3.2 CONDITIONAL SCALE MODEL FOR STRUCTURAL ERROR DISTRIBUTION The
conditional distribution of e= u—Va given X= [X, X;] is completely specified up to unknown
scalar factorj.e.

e|X~oi1(X)e (3.2)

whereo;(X) is a fixed function of X, and has a completely specified distributiowhich may
depend on X

Assumption3.1 means that the distribution afgiven X only depends oiX and a (typically un-
known) scale factoo (X). Of course, this holds wheneveiis independent oX with a distribution
of the formu ~ o v, whereu has a specified distribution amdis an unknown positive constant. In
this context, the standard Gaussian assumption is obtained by taking

v ~ N[0, I7]. (3.3)

But non-Gaussian distributions are covered, including heavy-tailedbdistms which may lack

moments (such as the Cauchy distribution). Similarly, Assumg@i@means that the distribution
of e given X only depends oX and a (typically unknown) scale factor (X), so again a standard
Gaussian model is obtained by assuming

g ~NI[0, I7]. (3.4)

In general, assumptior&1 and 3.2 do not entail each other. However, it is easy to see that both
hold when the vector@ut,\/{}', t,,..., T, are i.i.d. (conditional orX) with finite second moments
and the decomposition assumption (2.17) - (2.18) holds. This will be theadastori if the vectors
[w,V,],t,,..., T, are i.i.d. multinormal (conditional oX).

We will study in turn the following problems:

1. test and build confidence sets f&r
2. test and build confidence sets B 8 + a;
3. test and build confidence sets &r

4. test and build confidence sets for scalar linear transformati@ns
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3.1. AR-type tests for3 with possibly non-Gaussian errors

Since this will be a basic building block for inference on endogeneity paeasjave consider first
the problem of testing the hypothesis

Hp(Bo) : B=Bo (3.5)

wheref, is any given possible value @f. Several procedures have been proposed for that purpose.
However, since we wish to use an identification-robust procedure li@haa finite-sample theory
can easily be easily obtained and does not require assumptions on theitistrdd Y, we focus on

the Anderson and Rubin (1949, AR) procedure. So we consider tefdraned equation:

y—YBo= X1 + X1+ (3.6)

wheren? = y+ M(B— By), 1§ = M2(B — By) andv® = u+V (B — By). Sincer = 0 undeHg (By),
itis natural to consider the correspondifgstatistic in order to tedtig(3,) :

(Y=YBo)' (M1 —M)(y—YBo)/ke
(Y=YBo)'M(y—YBo)/(T —K)

whereM; = M(X;) andM = M(X); for any full-column rank matrixA, we setP(A) = A(AA) A
andM(A) = | —P(A). Under the usual assumption wheare- N[0, 02I1] independently oK, the
conditional distribution oAR(3,) underHg(B,) is F (kz, T — k). In the following proposition, we
characterize the null distribution 8fR(,) under the more general Assumptidi.

AR(Bo) = (3.7)

Proposition 3.3 NULL DISTRIBUTION OF AR STATISTICS UNDER SCALE STRUCTURAL ERROR
MODEL. Suppose the assumptiofisl), (2.2) and3.1hold. If B = B, we have:
' (M1 —M)u/ky

U'MU/(T —K)

AR(Bo) = (3.8)

and the conditional distribution of AfB,) given X only depends on X and the distributiorvof

The latter proposition means that the conditional null distributio®BfS,), given X, only
depends on the distribution of Note the distribution o¥ plays no role here, so no decomposition
assumption [such as (2.17) - (2.18) or (2.23)] is needed. If the distribafio |X can be simulated,
one can get exact tests basedAdR(3,) through the Monte Carlo test method [see Dufour (2006)],
even if this conditional distribution is non-Gaussian. Furthermore, thet égsicobtained in this
way is robust to weak instruments as well as instrument exclusion even ifdfnduation of u| X
does not have moments (the Cauchy distribution, for example). This mayehé fe example in
financial models with fat-tailed error distributions, such as the Studdistribution.

When the normality assumption (3.3) holds afi$ exogenous, we havaR(B) ~ F (ko, T —k),
so thatHg(3,) can be assessed by using a critical region of the fOAR(B,) > f(a)}, where
f(a) =Fq(ke, T —K) is the 1— a quantile of the--distribution with(kz, T — k) degrees of freedom.
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A confidence set with level 2 o for B8 is then given by
%p(a) = {Bo: AR(Bo) < Fa(ke, T —K)} = {B:Q(B) <0} (3.9)

whereQ(B) = B'/AB+ BB +c, A=Y'HY, b= —2Y'Hy, c = yHy, H = My — [1+ f(a) ()M,
andf(a) = Fy(kz, T —k); see Dufour and Taamouti (2005).

Suppose now that the conditional distributionwfgiven X) is continuous, so that the condi-
tional distribution ofAR(3) under the null hypothesisig () is also continuous. We can then
proceed as follows to obtain an exact Monte Carlo testg(f3,) with levela (0 < a < 1):

1. choosax* andN so that aN] +1
a*NJ|+
a=—"": 3.10
N+1 ( )

2. for givenf,, compute the test statistm?(")(ﬁo) based on the observed data,;

3. generate\ i.i.d. error vectorw () = [0{) ... o), j=1,... N, according to the spec-
ified distribution ofu |X, and compute the corresponding statiR)), j = 1,..., N, fol-
lowing (3.8); note the distribution &&R(f3,) does not depend on the specific vaiigtested,
so there is no need to make it depend3n

4. compute the empirical distribution function basedd®), j =1, ..., N,

Eux = DI LARY <

A1
N+1 ’ 3.11)
or, equivalently, the simulategtvalue function
1+3N 1[ARD > x
ol = - 2L ART 24 (3.12)

N+1
wherel[C] = 1 if conditionC holds, andl [C] = 0 otherwise;

5. reject the null hypothesisig(B,) at level a when AR?(B) > Fyt(1-a*), where
Fyl(q) = inf{x: Ry (x) > q} is the generalized inverse &(-), or (equivalently) when
Pn[AR (Bg)] < a.

Under the null hypothesidg (B,),
P[ARY(Bo) = Fy* (1-a) ] =P[pn[AR(Bo)] < a] = @ (3.13)

so that we have a test with level If the distribution of the test statistic is not continuous, the MC
test procedure can easily be adapted by using “tie-breaking” methediaissin Dufour (20065.

2|t is also useful to note that, without correction for continuity, the algoritmoppsed for statistics with continuous
distributions yields a conservative teist, the probability of rejection under the null hypothesis is not larger the ndmina
level (a1).
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Correspondingly, a confidence set with level & for 8 is given by the set of all valug8, which
are not rejected by the above MC test. More precisely, the set

() = { Bo: PIAR®(Bo)) > a} (3.14)

is a confidence set with leveHa for B. On noting that the distribution gKR(BO) does not depend
on B, we can use a single simulation for all valygs settingfy(a*) = Fyt(1—a*), the set

@p(a; N) = {Bo: ARO < fN(a*)} (3.15)

is equivalent ta6z (a) — with probability one — and so has level-lor. On replacing> and< by >
and< in (3.14) - (3.15), it is also clear that the séf8, : pn[ARY (Bo)] > a} and

€p(a;N) = {Bo: AR (By) < fu(a")} (3.16)
constitute confidence sets frwith level 1— a (though pAossiny a little larger than-1a). The
quadric form given in (3.9) also remains valid witfa ) = fy(a*).
3.2. Inference on@

Let us now consider the problem of testing the hypothesis
Hg(60) : 6 = 6o (3.17)

wherefg is a given vector of dimensioB, and Assumptior8.2 holds. This can be done by consid-
ering the extended reduced form in (2.20):

y=YO0+Xamm +XoT, + € (3.18)

wheref = B+a, m; = y—Ia, i, = —[1>a, andeis independent of, X; andX,. Thus the extended
reduced form is a linear regression model. As soon as the nj#tikg, X;] has full-column rank,
the parameters of equation (3.18) can be tested through stahdasts.

We will now assume thaty, Xi, X;] has full-column rank with probability one. This property
holds as soon a$ = [X1, Xz] has full column rank an¥ has a continuous distribution (conditional
on X). TheF-statistic for testindg(6o) is

(6—60)'(Y'MY)(6—60)/G
yM(2)y/(T -G—k)

where8 = (Y'MY)~1Y'My is the OLS estimate o in (3.18),M = M(X), X = [X1, Xz], andZ =
[Y, X1, Xz]. Under the normality assumption (3.4), we have:

Fo(6o) = (3.19)

Fo(60) ~F(G, T —k—G). (3.20)
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Under the more general assumptg, it is easy to see that

MY (Y'MY)~1Y'Me/G

Fol%0) = ~M(Z)e/(T 6K

(3.21)

underHg(0p). On observing that the conditional distributioni&f(6o), givenY and X, does not
involve any nuisance parameter, the critical value can be obtained by simulatgalso important
to note that this distribution does not depend@n so the same critical value can be applied irre-
spective offg. The main difference with the Gaussian case is that the critical value maydiepen
Y andX. Irrespective of the case considered [(3.20) or (3.21)], we shabtéebyc(a) the critical
value used foFy(6o).

From (3.19), a confidence set with level-Ir for 6 can be obtained by invertirigy (o) :

%o(a) = {60 Fo(B0) < f(a)} = {B0:Q(8o) < 0} (3.22)

where

aQ(8) = (6—6) (YMY)(H—0)—Cy= 6'/A6+b6+C, (3.23)
wherecy = f(a)G, £ =yM(2)y/(T —G—Kk),

A=Y'MY, b=—2A8 = —2Y'My, c= 6'A8 —y = 8'(Y'MY)B — G = yHy, (3.24)

andH = P(MY) — f(a)[G/(T — G—k)]M. Since the matriA is positive definite (with probability
one), the quadric séfp(a) is an ellipsoid (hence bounded); see Dufour and Taamouti (2005).2007
This reflects the fact tha is an identifiable parameter. As a result, the corresponding projection-
based confidence sets for scalar transformatidfsare also bounded intervals.
In view of the form of model (3.18) as a linear regression, we can teseisdime way linear
restrictions of the form
Hwo(Yo) W0 = yo (3.25)

wherew is aG x 1 vector andy, is known constant. We can then use the corresportdstafistic

B WO -y,
and rejecHyg(yy) When
[two (Vo)| > cw(a) (3.27)

where cy(a) is the critical value for a test with level. In the Gaussian casgyg(Y,) follows a
Student distribution witfT — G — k degrees of freedom, so we can takga) =t(az; T — G —Kk).
Whene follows a non-Gaussian distribution, we have

(T—G—KY2(Y'MY) Y'Me

3.28
(EIM(Z)g)l/z[w’(Z’Z)_lw}l/Z ( )

two(Yo) =
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underHy(Y;), So that the distribution df(y,) can be simulated lik€g(6o) in (3.21).

3.3. Jointinference onB and regression endogeneity parameters

We can now derive confidence sets for the vect@fsa’)’ and(B’, 8’)’. By the Boole-Bonferroni
inequality, we have:

P(B € ¢5(a1)andd € Gp(az)] > 1-P[B ¢ Gp(a1)] — P[0 ¢ €p(az)] > 1—ar1—az  (3.29)
The set

Cp.o)(a1,a2) = {(6p,Bo) : Bo € @p(a1), Bo € Gp(02)}
= {(60, Bo)" : Q(Bo) <0,Q(80) <0} (3.30)

is thus a confidence set with leve-lo wherea = a1+ a».
In view of the identityd = 3 + a, we can writeQ(0) in (3.23) as a function g8 anda:

Q(8) = Q(B+a) = dAa+ (b+2AB)a+ [c+b'B + B'AB].
Then the set _
Cg(ﬁ a)(a) = {(Bo, )" : Q(Bo) < 0andQ(B,+ao) < 0} (3.31)

is in turn a joint confidence set with leveHa for 3 anda. Thus, finite-sample inference on the
structural (possibly unidentifiable) parameseis possible. Of course, d is not identified, a valid
confidence set will cover the set of all possible values (or be untem)rwdth probability 1- a [see
Dufour (1997)].

3.4. Confidence sets for regression endogeneity parameters

We can now build “marginal” confidence sets for the endogeneity coefficartora. In view of the
possibility of identification failure, this is most easily done by projection tectesquetg(, a) be
any function of anda. Since the even(f3, a) € €, 5 (a) entailsg(B, a) € g[%(, a(a)], where

9l (s.a(a)] = {9(B. @) : (B, ) € €. a(a)}, we have:
P [g(B, @) € g€ (5, a(a)] > P[(B,a) € C(5,a(a)] >1-a. (3.32)
On takingg(B, a) = a,we see that

%a(a) = {acRC:(B, )G%B a(a) for someB} (3.33)
= {aeR®:Q(B+a) <0andQ(B) < 0 for someB}

is a confidence set with level-la for a.
WhenG = 1, the matricesA, A, b, b, c and¢in (3.23) reduce to scalars, and the different
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confidence sets take the following simple forms:

Cplar) = {B:ABZerBJrch}, Golaz)={0: AB?+bO+C<0},  (3.34)
%aa) = {a:AB?+bB+c<0, A&+ (b+2AB)a+[c+bB+AB% <0}. (3.35)

Closed-form for the set&p(a1) andés(az2) are easily derived by finding the roots of the second-
order polynomial equations3? +bB +c= 0 andAB?+ b +c = 0 [as in Dufour and Jasiak (2001)],
while the set¢;(a) can be obtained by finding the roots of the equation

Ad +b(B)a+c(B) = 0 whereb(B) = b+ 2AB andc(B) = C+ bB + AB? (3.36)

for eachB € €3(a1).

We shall now focus on building confidence sets for scalar linear tremsfonsg(a) = wa =
w60 —w 3, wherewis aG x 1 vector. Conceptually, the simplest approach consists in applying the
projection method fron¥,(a), which yields the confidence set:

bwa(@) = gw[%a(a)]={d:d=waforsomeac %(a)}

{d:d=wa, Q(B+a) <0andQ(B) <0 for someB}.

But it will more efficient to exploit the linear structure of model (3.18), whidlows one to build a
confidence interval fow' 6.

Following Dufour and Taamouti (2005, 2007), confidence setgf¢B) = w3 andgy(0) =
gw = W 6 can be derived frorfgs (1) and%p(az) as follows:

ow[€p(a1)] = {x1: x1 =W B whereQ(B) < 0}
= {x1:%x =Wp wheref’AB+b'B+c<0} (3.37)

Cwp(a1)

whereA, b andc are defined as in (3.9). Far 6, we can use &-type confidence interval based on
t(Yo):

Gwo(az) = In[6(02)] = {yo: twe(Vo)| < Cw(a2)}
= {¥o: W8 -y <D(az)} (3.38)

whereD(az) = cu(a2) 5(WH), 6(W8O) = sw/(Z'Z)~W]*/2 andc,(a>) is the critical value for a
test with levela, [determined as in (3.27)]. Setting

Cowp.we) (a1, a2) = {(X,Y) 1 X € Gyp(az)andy € Gue(a2)}, (3.39)
we see tha¥(wp, we) (a1, 02) is a confidence set fdw' 3, w'0) with level 1— a3 — az:
P{(WB, W8) € Cwp,we)(a1, a2)] =PWP € Gyp(ar)andw 6 € ‘5;/9(012)] >1-a (3.40)

wherea = a1+ a». Forany poink € R and any subs&f C R, setx— A= {ze R: z=x—yandy €
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A}. Sincewa=w6 —w 3, itis clear that

(WB, W) € Cwp,we)(a1, 02) < WO —-wac Gyp(ar)andw o c CK;_/Q(Gz)

Swacwl—Gyp(a1) andw e € Gyo(az) (3.41)

so that

PWaec w8 —%yp(a1) andwd € Gyo(az)] =PWB € Gyp(ai)andwd € Gye(az)]
>1—0a1—0Qs.
(3.42)
Now, consider the set

Gwa(01, a2) ={z€R:zey—Cypg(ay) for somey € Gwo(02)}. (3.43)
Since the evenfw'a c W0 — Gyp(a1) andw 6 %wo(az)} entailswa e Gya(a1, az), we have:
PWa € Ga(ay, a2)] > PWB € Gyp(a1)andw'd € Gye(az)] > 1—a1—az (3.44)

andéya(ai, a2) is a confidence set with level-da 1 — o, for wa.

Since%we(a2) is a bounded interval, the shapedif, (a1, a2) can be deduced easily by using
the results given in Dufour and Taamouti (2005, 2007). We focus ocetbe wherd is nonsingular
[an event with probability one as soon as the distributioARfS,) is continuous] anev # 0. Then
the setég(a1) may then rewritten as follows: A is positive definite,

%wp(o1) = |[WB—D(a), wB+D(ay)|, ifd>0,
0, if d <0,

(3.45)

where3 = —1A-1b, d = IYAlb—candD(a;) = 1/d(WA-Iw); if A has exactly one negative
eigenvalue,

Gwp(0d1) = |-, W — D(al)} U [V\/B +D(ay), +oo [ , ifwA lw<0andd <0,
— R\{Wp}, if WA~lw=0andd < 0
=R, otherwise;
(3.46)

otherwise, gy g(a1) = R. Gyp(a1) = 0 corresponds to a case where the model is not consistent
with the data [so thata(a1, a2) = 0 as well], whileGyg(a1) = R and6yp(a1) = R\{V\/B}
indicate thatv g is not identifiable and similarly foa [so that®,ya(a1, a2) = R]. This yields the
following confidence sets faw'a : if Ais positive definite,

Guald1, a2) = [W(B—B)—Dy(ay, az), W(8—B)+Dy(as, az)|, ifd>0, 347)
=0, if d<O0,
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whereDy (a1, az) = D(a1) +D(a3); if A has exactly one negative eigenvaluéA—'w < 0 and
d<o0,

Guwa(a1, 02) = | —o0, W (B —B)—Dy(ay, 0!2)} U [V\/(é—B) +Di(ay, az), 4o (3.48)

whereD| (a1, az) = D(a1) —D(a2); otherwise Gwa(a1, a2) = R. These results may be extended
to cases wherA is singular, as done by Dufour and Taamouti (2007).

4. Asymptotic theory for inference on endogeneity parameters

In this section, we examine the validity of the procedures developed in S&timnler weaker
distributional assumptions, and we show how inference on covariamicgeneity parameters can
be made. On noting that equations (3.6) and (3.18) constitute standard égessgion models (at
least under the null hypothegs= ), it is straightforward to find high-level regularity conditions
under which the tests based AR(3;) andFg(6o) are asymptotically valid.

For AR(B,), we can consider the following general assumptions:

1

1
?u’u 202 >0, (4.2)
1 .
?x’x P 5y with det(X) # 0, (4.3)
1., L 2
—=X'U= Py, Wy~ N[0, 053x], (4.4)

Nai

whereX = [Xi, Xz]. The above conditions are easy to interpret: (4.1) represents the asymptotic
orthogonality between and the instruments iX, (4.2) and (4.3) may be viewed as laws of large
numbers fou and X, while (4.4) is a central limit property. Then, it is simple exercise to see that

AR(Bo) - k12x2<kz> when = B,. 4.5)

Similarly, for Fg(6o), suppose:

%z’e—‘i 0, (4.6)

%e(eﬁ o2, (4.7)

%z’z 2, 5, with det(Z) #0, (4.8)
%Z’eb Wxer Uxe~ N[0, 0257]. (4.9)
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whereZ = [Y, X1, Xp]. Then
1
Fo(60) = 5X°(G) whenb = 6. (4.10)

The asymptotic distributions in (4.5) and (4.10) hold irrespective whethenstrementsX are
weak or strong. Further, as soon as (4.1)-(4.1) and (4.6) - (4.9) tledconfidence procedures
described in Section 3 remain “asymptotically valid” witiia1) = x?(a1; ko) /ke and f(a) =
x2(az; G)/G, wherex?(a1; ko) andx?(az; G) are respectively the 2 a1 and 1- a, quantiles of
the corresponding? distributions. Of course, the Gaussian-based Fisher critical values Isway a
be used (for they converge to the chi-square critical valuds-asw).

We can now consider inference for covariance endogeneity paranmtgr The problem of
building confidence sets fary, is especially important for assessing partial exogeneity hypotheses.
Sincea; =0, j =1,...,G does not entaib,y; = 0(where 1< j < G), confidence sets on the
components o cannot directly be used to assess for example, the exogeneity of epebsar
Yi=0,j=1,...,G

Confidence sets and tests fory can be deduced from those arnthrough the relationship
ovu = Zvagiven in (2.11). On replacing by 3, 1oy, in €,(a), we see that the set

Con,(Q;2y) = {0ovueR®:oyy=Syaandac €u(a)}
= {oweR®:Q(B+ 5, ovy) <0andQ(B) <0forsomeB} (4.11)

is a confidence set with levalfor ay,. This set is simply the image &,(a) by the linear trans-
formationg(x) = 2y x. The difficulty here comes from the fact tha§ is unknown. Let

Sv=VV /(T -k (4.12)

whereV =M (X)Y is the matrix of least-squares residuals from the first-step regressignya@er
standard regularity conditions, we have:

5y B sy (4.13)

where det>y) > 0. If B, andag are the true values @8 anda, the relationsfg = 3+ ap and
Ovw = 2vap entail thatFg(0p) can be rewritten as follows:

(60— Bo— =, ovi) (Y'MY)(8 — By — 5, L ov) /G .

-1 o
FolPot 2 ova) = YM@)y/(T -Gk (@34
Replacingsy by 5y, we get the approximate pivotal function:
o_ 51 vz n_ 51

yM(2)y/(T -G —k)

If (4.13) holds, it is easy to see (by continuity) tHat(8, + 2, tovw) and Fe (B + =y *ovwo)
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are asymptotically equivalent with a nondegenerate distribution, vfaeand oy are the true
parameter values. Consequently, the confidence set ofdypéa) based orfFg (B, + 2\7 Lovw)

as opposed t&g (B + Z\jlovuo) has level - a asymptotically. This set is simply the image of
%a(a) by the linear transformatiog(x) = 3y x, i.e.

Cou(A; 3y) = {oweR®: oy, =3vaandac %a(a)}
= {oweR®:Q(B+ 5, ovy) <0andQ(B) <0forsomeB}. (4.16)

Finally, confidence sets for the component@f,, and more generally for linear combinations
W oyy, can be derived from those aa as described in Section 3.4. Fdy given, the relation
ovy = 2ya entails that a confidence set fotoy,, (with level 1— a) can be obtained by computing
a confidence set (at leveHa) for wja with wy = >yw. Whenzy is estimated bﬁv, takingwy =
Sywyields a confidence set fary, with level 1— a asymptotically.

5. Empirical applications

We will now apply the methods proposed above to two empirical examples: [dt®nebetween
trade and growth [Dufour and Taamouti (2007), Irwin and Tervio @0Brankel and Romer (1999),
Harrison (1996), Mankiw, Romer and Weil (1992)] and the well knowabtem of returns to school-
ing [Doko Tchatoka and Dufour (2009), Dufour and Taamouti (208%Rgrist and Krueger (1991),
Angrist and Krueger (1995), Mankiw et al. (1992)].

5.1. Trade and growth

The trade and growth model studies the relationship between standardsgfdnd openness.
Frankel and Romer (1999) argued that trade share (ratio of imporigorte to GDP) which is the
commonly used indicator of openness should be viewed as endogertmisuthors then suggest
to estimate the income-trade relationship using an IV method. The equation studieeh by:

In(Income) = B+ B,Trade + y;In(Pop) + y,In(Areg) +u;,i=1,...,N (5.1)

where Incomeis the income per capita in country Trade is the trade share (measured as a ratio
of imports and exports to GDP), Pojs the logarithm of population of countiy and Area is the
logarithm of countryi, area. The instrument suggested by Frankel and Romer (1999) iswinstr
on the basis of geographic characteristics. The first stage equatioensly:

Trade = bp+b1Z +c1Pop+c,Area +Vi,i=1,...,N (5.2)

wherez; is a constructed instrument. We use the sample of 150 countries and the diada fioc
each country the trade share in 1985, the area and population (1@8%)ata income (1985),
and the fitted trade share (instrument). As showed in Dufour and Taar200%), it is not clear
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how“weak "the instruments are for this sample.

We follow the methodology developed in this paper to build projection-basd#itence sets for
regression endogeneita” and covariance endogeneitgy,” . We have also reported 1V-based
confidence intervals for the identified paramet@r= 3 +a” .

The estimate of the regression endogeneity paramateirt'the transformed equation

In(Income) = B, + B, Trade + y;In(Pop) + y,In(Area) +Via+ & (5.3)

is arounda= —1.817, while the estimate oky from the first-step regressioni% =0.209 Hence,

the estimate of of the covariance endogeneity paranaetgis aboutoly = 5ya = —0.3805 Table

1 presents the confidence sets at levelS%/and 95% foiB, and@ = 3, +a, and at levels 95%and
90% fora andoyy. The results show clearly that bo#y (o) and%y,,(a) are bounded in all cases.
However, the confidence interval that result from projection are leogepare with alternative V-
based confidence intervals. This suggests that the instruments may moystrong in this model.
Moreover, we observe that botfy(a) andéy,,(a) contain O, so the exogeneity of the trade share
variable cannot be rejected at levels= 5% ora = 10%.

5.2. Education and earnings

We now consider the problem of estimating the returns to schooling. The rsidigs a relation-
ship between log weekly earning and the number of years of educaticsesarhl other covariates
(age, squared age, year of birth, ... ). Several authors includingigramd Krueger (1991) ar-
gued that schooling may be endogenous in this model and proposed teusehiguarter as an
instrument to estimate the returns to schooling consistently. The reason igliadé/born in the
first quarter of the year start school at an older age, and can ¢hedfop out after completing less
schooling than individuals born near the end of the year. Hence, indilidorn at the beginning
of the year are likely to earn less than those born during the rest of the Beand et al. (1995)
however, showed that the quarter of birth instruments are very weako Dchatoka and Dufour
(2010, 2011) showed that DWH-tests cannot detect the endogeneishobling in this model,
since the instruments have poor quality [see Dufour and Taamouti (2007)]

Here, we assess whether schooling is exogenous by using the projaetibad developed in
this paper. The model is specified by:

kg

y = [30+51E+'Zlyi><a+u, (5.4)
kz B kl
E = no+zimzi+_chi>ﬁ+v (5.5)

wherey is log-weekly earningsk: is the number of years of education (possibly endogenos),
contains the exogenous covariates (age, age squared, 10 dummiéshfaf lyear). Z contains

3The F-statistic in the first stage is about 13 as indicated in Frankel andrid@$9, Table 2, p.385), which is not to
high compared to the rule of thumb of 10 suggested by Staiger and S#®@K)(ih the weak instruments case.
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Table 1. Projection-based confidence sets for different parametgirevith model

ARtype CS’s 97.5% 95%
Cp, (a) {B:0.230632 — 4.7578, +0.043< 0} | {B,:0.47833 — 4.8603,+1.271< 0}
= [0.009, 20.623 = [0.2685 9.896
Co(a) {6:0.30592 - 0.1276 — 0.039< 0} {6:0.30692 - 0.1276 — 0.027< 0}
= [~0.205,0.621 = [-0.153 0.569
Co(0ar) based ottyyg(Yp) [—0.051 0.466 [—0.018 0.433
Scheffé-type CS's 95% 90%
Ga(a) [~20.828 0.612 [—10.049,0.300
%a(a) based oty g(Yp) [—20.674 0.457 [—9.9140165
Coy, (@) [~4.361,0.128 [—2.104,0.063
Coy, () based oy (o) [~4.329 0.096 [~2.076,0.035




40 dummies obtained by interacting the quarter of birth with the year of birth.idmbdel, 3,
measures the return to education. The data set consists of the 5% paxiargle of the 1980 US
census for men born between 1930 and 1939. The sample size is 32B<s9ations.

Table 2 presents the results. We observe #jgta) is unbounded indicating thgd is not
identified. However@éy(a) is bounded The latter result confirms the féicts always identified
even if identification is weak (weak instrument). As a resé}i,a) and%s,, (o) are unbounded in
all cases. That indicates clearly that identification is an issue in this model.

6. Conclusion

In this paper, we have studied the problem of testing hypotheses and buildifidence sets on
endogeneity parameters. Such parameters have both intrinsic and statigtiest, because they
represent the effect of “common factors” which induce simultaneity atetaéne simultaneity bi-
ases (along with other features of the data). We stressed the useffldetsguishing betweere-
gression endogeneity parametéas andcovariance endogeneity parametécs,,): regression en-
dogeneity parameters measure the effect of “missing variables” in lineatwgtal equations, while
covariance endogeneity parameters directly indicate which variables ntisgabed as “exogenous”
in statistical inference. Further, regression endogeneity parametersanagted relatively easily,
and we proposed finite-sample inference methods for these. Infepenoavariance endogeneity
parameters involves additional nuisance parameters (e.g., the unkneanaogce matrix>y), so
only asymptotically justified methods were given ty,,.

The identification of endogeneity parameters was also discussed. Aftenltding necessary
and sufficient conditions for the identification of such parameters, werebd a simple equivalence
between the identification of individual regression endogeneity parasr@¢rand the identifica-
tion of the corresponding structural parameigds, while this feature does not hold for covariance
endogeneity parameters. In view of the possibility of identification failurentitieation-robust
inference procedures were proposed for endogeneity paramé&ergoint hypotheses involving
structural and regression endogeneity parameters, as well as méngio#theses on regression en-
dogeneity parameters, finite-sample procedures were proposedr Gadssian errors, the tests
and confidence sets are based on standard Fisher critical valueswietE class of parametric non-
Gaussian errors (possibly heavy-tailed), exact Monte Carlo proesdian be applied using the
statistics considered. As a special case, this result also holds forARugpe tests and confidence
sets on structural coefficients.

We showed that the proposed finite-sample procedwees those based on a Gaussian as-
sumption on the errors) remain asymptotically valid under weaker distributi@samptions. Tests
of partial exogeneity hypotheses (for individual potentially endogsrexplanatory variables) are
covered as instances of the class of proposed procedures. Thptatig theory also yields infer-
ence for covariance endogeneity. Even though the asymptotic theorlyismproximate in finite
samples, it is robust to identification assumptions. Finally, the proposedduraes were applied to
two empirical examples: the relation between trade and economic growth, emddély studied
problem of returns to education.
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Table 2. Projection-based confidence sets for different parameteasrimg equation

ARtype CS'’s 97.5% 95%
Cp, (@) {B,:—2.38282+0.3323, —0.107< 0} | {B,: —2.2293%2+0.313, - 0.1< 0}
=R =R
Co(ar) {6:3.52762 - 0.50 +0.018< 0} {6:3.5278% — .50 +0.018< 0}
=[0.0701 0.071§ = [.0702 .0715
Co(a) based ortyo(Yy) [.0707,.071Q [.0707,.071Q
Scheffé-type CS’s 95% 90%
Cala) R R
Coy,(Q) R R




APPENDIX

A. Proofs
PROOF OFLEMMA 3.3  On multiplying the two sides of (3.6) byl andM; — M, we see that:

M(y—YBo) = Mu+MV(B-p),
(M1 =M)(y=YBo) = MiXolT2(B—Bg) + (M1 —M)u+ (M1 -MV(B—-By). (A1)

When Assumptior8.1 holds and3 = 3, this entails:
M(y—YBo) = 0(X)Mu, (M1 —M)(y—YBg) = a(X)(My —M)u.
Thus, theAR-statistic in (3.7) can be rewritten as:

O'(X)ZU/(Ml—M)U/kZ . U/(Ml—M)U/kz
o(X)2u'Mu/(T—-k)  u'Mu/(T—k) °

AR(BO) =

Hence, the null conditional distribution &R(S3,), given X, only depends o and X. If the
normality assumption (3.3) also holds amds independent oX, then

U'MU ~ x3(T =K), U'(Mp—M)U ~ x%(k2);

further, sinceM (M1 —M) =0, v’'Mu andv’(M; — M)u are independent conditional o6 Conse-
quently,AR(Bg) ~ F(ko, T —K). O
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