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Abstract

This paper builds a structural VARMA (SVARMA) model for investigating Cana-

dian monetary policy. Using the scalar component model (SCM) methodology pro-

posed by Athanasopoulos and Vahid (2008a), we first identify a VARMA model and

then construct a SVARMA for Canadian monetary policy. We include a SVAR model

in our study for the purpose of comparison and we generate impulse responses along

with 68% confidence bands for both models. Relative to the SVAR, the impulse

responses generated by the SVARMA appear to be consistent with those predicted

by various economic theoretical models and solve the economic puzzles found com-

monly in the empirical literature on monetary policy. The successful construction

and implementation of the SVARMA model for Canadian monetary policy analysis,

along with its promising impulse responses and superior out-of-sample forecasting

performance of its reduced form compared to the VAR alternatives, indicates the

suitability of this framework for small open economies.

Keywords: VARMA models, Identification, Impulse responses, Confidence band,

Open economy, Transmission mechanism.
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1 Introduction

Over the past three decades, extensive investigations into modelling and analyzing mon-

etary policies have led to the conclusion that differences in model specifications and pa-

rameter estimates across models can lead to widely different policy recommendations. In

addition, the potential loss from basing monetary policy on an invalid model can be sub-

stantial. Since the seminal paper by Sims (1980), the use of vector autoregression (VAR)

and structural VAR (SVAR) models has been prevalent in the empirical literature on mon-

etary policy analysis. For an extensive review, see Leeper et al. (1996) and Christiano

et al. (1999). Despite the sound theoretical and empirical justifications for the superior-

ity of vector autoregressive moving average (VARMA) models over VAR-type models for

policy modelling, the use of the former is still in its infancy; more on this later. The

main reason for this is the lack of methodological advances in establishing uniquely iden-

tified VARMA models. Recently, however, Athanasopoulos and Vahid (2008a) proposed

a complete methodology for identifying and estimating canonical VARMA models by ex-

tending the work of Tiao and Tsay (1989). They established necessary and sufficient

conditions for exactly identifying a canonical VARMA model so that all parameters can be

efficiently identified and estimated simultaneously using full information maximum likeli-

hood (FIML). Furthermore, Dufour and Pelletier (2002, 2008) illustrated that the VARMA

representation is more appropriate for modelling monetary policy analysis than the VAR

counterpart.

The main contribution of this paper is the building of a SVARMA model for Canadian

monetary policy, and the conducting of an investigation to uncover the underlying effects

of the Bank of Canada’s monetary policy on the inflation rate and the output level in the

economy, among other things. The latter is accomplished by generating reliable dynamic

impulse response functions along with 68% confidence bands. We apply the methodology

of Athanasopoulos and Vahid (2008a) to examine the advantages of using VARMA models

for the monetary policy framework of Canada - a small open economy. The aims of the
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paper are to: (i) adapt this new methodology to build a structural VARMA (SVARMA)

framework for Canadian monetary policy analysis; (ii) compare the performance of the

SVARMA framework with its SVAR counterpart in terms of impulse responses; and (iii)

discover whether the new framework can resolve the economic puzzles commonly found in

the empirical monetary literature of small open economies.1

Monetary policy is widely implemented as a stabilization policy instrument for steering

economies in the direction of achieving sustainable economic growth and price stability.

The efficacy of monetary policy depends on the ability of policy makers to make an accurate

assessment of the timing and effect of the policy on economic activities and prices. In 1991,

jointly with the Canadian government, the Bank of Canada adopted an inflation targeting

monetary policy framework, with the intention of keeping annual inflation close to two per

cent and within the range of one to three per cent. To achieve this objective, the Bank

of Canada uses the overnight interest rate as it’s policy instrument (see Bhuiyan, 2012).

In a low inflation environment, spending, saving, investments and output are expected to

increase which, in turn, lead to steadily increasing living standards in Canada; see, for

example, Ragan (2005).

Although VARs provide useful tools for evaluating the effect of monetary policy shocks,

there are ample warnings in the literature of their limitations based on both theoretical

and practical grounds. We shall discuss some of the justifications for the use of VARMA

models over VARs provided in the recent literature. In studies of monetary policy, the

dominant part of the analysis is based on the dynamics of impulse response functions

of domestic variables to various monetary shocks; these impulse responses are derived

using Wold’s decomposition theorem. In a multivariate Wold representation, however, any

covariance stationary time series can be transformed into an infinite order vector moving

1The main economic puzzles are referred to as: (i) the price puzzle (an unanticipated tightening of
monetary policy, which is identified with innovations in interest rates, is associated with an increase in
the price level rather than a decrease); (ii) the output puzzle (an unanticipated tightening of monetary
policy, is associated with an increase in the output level rather than a decrease); and (iii) the exchange
rates puzzle (an unanticipated increase in interest rates is associated with a depreciation of the country’s
exchange rate relative to the US rather than an appreciation).
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average (VMA(∞)) process of its innovations. A finite order VARMA model provides a

better approximation to the Wold representation than a finite order VAR, with the former

producing more reliable impulse responses than the latter.

Several authors have put forward several convincing arguments in support of VARMA

processes over VARs for modelling macroeconomic variables.2 In addition, economic and

financial time series are, invariably, constructed data involving, for example, seasonal ad-

justment, de-trending and temporal and contemporaneous aggregation. Such constructed

time series would include moving average dynamics even if their constituents were gener-

ated by pure autoregressive processes. Further, a subset of a system of variables that was

generated by a vector autoregression would also follow a VARMA process.3

To simplify the modelling and estimating a system of variables, applied researchers

tend to approximate a VARMA process by a high-order VAR process. The use of VAR

approximations requires models with extremely long lag lengths, much longer than those

selected by typical information criteria such as the AIC or BIC, in order to describe a

system adequately and to obtain reliable impulse responses.4 However, in practice, the

available sample sizes are inadequate to accommodate a sufficiently long lag structure,

and thus lead to poor approximations of the real business cycle models (see, for example,

Chari et al., 2007). On the other hand, Dufour and Pelletier (2002, 2008) illustrate that

the impulse responses obtained from the more parsimonious VARMA representation are

more precisely estimated than those obtained from their VAR counterparts, while Athana-

sopoulos and Vahid (2008b) show that VARMA models forecast macroeconomic variables

more accurately than VARs. Moreover, via a simulation study, Athanasopoulos and Vahid

(2008b) demonstrate that the forecast superiority comes from the presence of moving av-

erage components.

2See for example, Zellner and Palm (1974); Granger and Morris (1976); Wallis (1977); Maravall (1993);
Dufour and Pelletier (2002); Lütkepohl (2005); Fry and Pagan (2005).

3Cooley and Dwyer (1998) claim that the basic real business cycle models follow VARMA processes.
More recently, Fernández-Villaverde et al. (2005) demonstrated that linearized dynamic stochastic general
equilibrium models in general imply a finite order VARMA structure.

4In a simulation study, Kapetanios et al. (2007) show that a sample size of 30,000 observations and a
VAR of order 50 are required to sufficiently capture the dynamic effects of some of the economic shocks.
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Despite the aforementioned justifications and recommendations to employ VARMA

models rather than VARs, the use of the former is not prevalent in applied macroeconomics,

mainly due to difficulties in identifying a unique VARMA representation and its estimation.

A search for an identified VARMA model is far more challenging than a simple VAR-type

model specification, and the lack of enthusiasm for the use of VARMA models is due to

such difficulties.5 In this paper, we build a SVARMA model for Canadian monetary policy

analysis in two stages: (i) we identify a VARMA model by implementing the methodology

of Athanasopoulos and Vahid (2008a); and (ii) we impose a recursive structure on the

contemporaneous matrix of SVARMA in order to identify the orthogonal policy and non-

policy shocks as opposed to a non-recursive contemporaneous SVAR structure applied by

Cushman and Zha (1997); Kim and Roubini (2000) and Bhuiyan (2012) on the Canadian

economy.6 In light of the foregoing discussions on its suitability, we expect the recursive

SVARMA model to produce reliable dynamic impulse responses that are consistent with

economic theoretical models and stylized facts, compared with the widely used SVAR

model.

In our empirical modelling of Canadian monetary policy, we use a similar set of seven

variables as Kim and Roubini (2000) who, among others, have estimated a SVAR model for

Canadian monetary policy. Of the seven variables, the world oil price index and the Federal

funds rates represent the foreign variables, while the industrial production index, consumer

price index, monetary aggregate M1, short-term interest rate and exchange rate represent

the domestic variables. However, in contrast to Kim and Roubini (2000) who employed the

market interest rate as the policy instrument, in this paper as in Bhuiyan (2012) we use the

overnight rate target to identify the monetary policy reaction function. Studies by Kim and

Roubini (2000) and Brischetto and Voss (1999) demonstrated that these seven variables

are sufficient to describe the monetary policy framework of small open economies. In fact,

they have provided evidence that these seven variables can capture the features of large

5See for example Hannan and Deistler (1988); Tiao and Tsay (1989); Reinsel (1997); Lütkepohl (2005).
6Bhuiyan and Lucas (2007) also used a recursive VAR model to asses the real and nominal effects of

Canadian monetary policy shocks.

5



and more complex open economy models, such as that investigated by Cushman and Zha

(1997). In a quest to solve the empirical puzzles (mentioned in footnote 1) which are found

largely in the VAR framework, Kim and Roubini (2000) developed SVARs for modelling

Canadian and other non-US G7 economies. However, their results for Canada indicate

that though the price puzzle did not exist, contrary to expectations, a monetary tightening

induced a brief increase in output instead of a fall. In this paper, the SVARMA-based

empirical results for the extended period of study show that there do not exist any of the

empirical puzzles and that a positive monetary shock reduced inflation, output and money

demand in the Canadian economy and the confidence bands around SVARMA responses

appear to be much more narrower. This indicates that the parsimonious SVARMA model

provides more precise impulse response functions compared to the SVAR model.

In a most recent study, Bhuiyan (2012) has developed a Bayesian SVAR model for the

Canadian economy and estimated the impacts of monetary policy shocks and the overnight

target rate was used as the policy instrument.7 In this Bayesian SVAR framework, the

policy variables and other domestic and foreign variables were allowed to react contempo-

raneously. The study found that the Bank of Canada responds to any home and foreign

variables that include information on future inflation while monetary policy affects the

Canadian real economy through the market interest rate and exchange rate.

The paper is organized as follows: Section 2 discusses briefly the VARMA methodology

proposed by Athanasopoulos and Vahid (2008a). Section 3 describes the variables used in

the models and their time series properties. Section 4 explains the impulse response func-

tions. Section 5 demonstrates in detail the identification of orthogonal shocks to monetary

policy-related variables and the estimation of the SVARMA model for Canadian monetary

policy, and reports and analyzes the empirical results. Section 6 concludes the paper.

7See Bhuiyan (2012) for the discussion on why overnight rate target would provide more precise measures
of exogenous monetary policy shocks compared to market interest rate.
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2 Identification of a VARMA model

For identifying and estimating a VARMA model we use the Athanasopoulos and Vahid

(2008a) extension of the Tiao and Tsay (1989) scalar component model (SCM) method-

ology. The aim of identifying scalar components is to examine whether there are any

simplifying embedded structures underlying a VARMA(p, q) process.

For a given K dimensional VARMA(p, q) process

yt = Φ1yt−1 + . . .+ Φpyt−p + υt −Θ1υt−1 − . . .−Θqυt−q, (1)

a non-zero linear combination zt = α′yt follows a SCM(p1, q1) if α satisfies the following

properties:

α′Φp1 6= 0′ where 0 ≤ p1 ≤ p,

α′Φl = 0′ for l = p1 + 1, . . . , p,

α′Θq1 6= 0′ where 0 ≤ q1 ≤ q,

α′Θl = 0′ for l = q1 + 1, . . . , q.

The scalar random variable zt depends only on lags 1 to p1 of all variables and lags 1 to q1

of all innovations in the system. The determination of embedded scalar component models

is achieved through a series of canonical correlation tests.

Denote the estimated squared canonical correlations between Ym,t ≡
(
y′t, . . . ,y

′
t−m
)′

and Yh,t−1−j ≡
(
y′t−1−j, . . . ,y

′
t−1−j−h

)′
by λ̂1 < λ̂2 < . . . < λ̂K . As suggested by Tiao

and Tsay (1989), the test statistic for at least s SCM(pi, qi), i.e., s insignificant canonical

correlations, against the alternative of less than s scalar components is

C (s) = − (n− h− j)
s∑

i=1

ln

{
1− λ̂i

di

}
a∼ χ2

s×{(h−m)K+s} (2)

where di is a correction factor that accounts for the fact that the canonical variates could

be moving averages of order j, and is calculated as follows:

di = 1 + 2

j∑
v=1

ρ̂v (r̂′iYm,t) ρ̂v (ĝ′iYh,t−1−j) , (3)
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where ρ̂v (.) is the vth order autocorrelation of its argument and r̂′iYm,t and ĝ′iYh,t−1−j

are the canonical variates corresponding to the ith canonical correlation between Ym,t and

Yh,t−1−j. Let Γ(m,h, j) = E(Yh,t−1−jY
′
m,t). This is a sub-matrix of the Hankel matrix of

the autocovariance matrices of yt. Note that zero canonical correlations imply and are

implied by Γ(m,h, j) having a zero eigenvalue.

In what follows, we provide a brief description of the complete VARMA methodol-

ogy based on scalar components. For further details, refer to Athanasopoulos and Vahid

(2008a) and Tiao and Tsay (1989).

Stage I: Identifying the scalar components

First, by strategically choosing Ym,t and Yh,t−1−j, we identify the overall tentative or-

der of the VARMA(p, q) by searching for s + K components of order SCM(p, q), given

that we have found s SCM(p − κ, q − µ) for {κ, µ} = {0, 1} or {1, 0} or {1, 1}. The

process of exploring the various possibilities of underlying simplifying structures in the

form of SCMs is a hierarchical one. Hence, the identification process begins by search-

ing for K SCMs of the most parsimonious possibility, i.e. SCM(0, 0) (which is a white

noise process), by testing for the rank of Γ(0, 0, 0) = E(Y0,t−1Y
′
0,t), where Ym,t = Y0,t and

Yh,t−1−j = Y0,t−1. If we do not find K linearly independent white noise scalar processes,

we set m = h, and by incrementing m and j we search for the next set of K linearly inde-

pendent scalar components. First, we search for first order “moving average”components

by testing for the rank of Γ(0, 0, 1) = E(Y0,t−2Y
′
0,t), and then we search for the first order

“autoregressive”components by testing for the rank of Γ(1, 1, 0) = E(Y1,t−1Y
′
1,t), and then

Γ(1, 1, 1) = E(Y1,t−2Y
′
1,t) for SCM(1, 1), and so on.

Conditional on the overall tentative order (p, q), we then repeat the search process, but

this time search for individual components. So, starting again from the most parsimonious

SCM(0,0), we sequentially search for K linearly independent vectors (α1, . . . ,αK) for m =

0, . . . , p, j = 0, . . . , q and h = m+ (q − j). As for a tentative order of (p, q), each series is

serially uncorrelated after lag q.
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The test results from first identifying the overall tentative order and then the individual

SCMs are tabulated in what are referred to as Criterion and Root tables. Reading from

the Criterion table allows us to identify the overall tentative order of the model, while

reading from the Root table allows us to identify the individual orders of the scalar compo-

nents. Since an SCM (m, j) nests all scalar components of order (≤ m,≤ j), for every one

SCM (p1 < p, q1 < q) there will be s = min{m−p1+1, j−q1+1} zero canonical correlations

at position (m ≥ p1, j ≥ q1). Therefore, for every increment above s, a new SCM (m, j) is

found. We demonstrate the reading of these tables in Section 5. For a complete exposition

of how to read from these tables and recognize the patterns of zeros, as well as for further

details on the sequence of testing, see Athanasopoulos and Vahid (2008a).

Suppose that we have identifiedK linearly independent scalar components characterized

by the transformation matrix A0 = (α1, . . . ,αK)′. If we rotate the system in (1) by A0,

we obtain

A0yt = A1yt−1 + . . .+Apyt−p + ηt −M1ηt−1 − . . .−Mqηt−q, (4)

where Ai = A0Φi, ηt = A0υt and Mi = A0ΘiA
−1
0 for i > 0. This rotated model in-

corporates whole rows of zero restrictions in the AR and MA parameter matrices on the

RHS, as each row represents one identified SCM(pi, qi). However, we should note that

obtaining the orders of SCMs does not necessarily lead to a uniquely identified system.

For example, if two scalar components were identified such that zr,t = SCM (pr, qr) and

zs,t = SCM (ps, qs), where pr > ps and qr > qs, the system will not be identified. To obtain

an identified system, we need to set min {pr − ps, qr − qs} , i.e. set either the autoregressive

or moving average parameters to be zero. This process is known as the “general rule of

elimination”, and in order to identify a canonical VARMA model as defined by Athana-

sopoulos and Vahid (2008a), we set the moving average parameters to zero.

Stage II: Imposing identification restrictions on matrix A0

Athanasopoulos and Vahid (2008a) recognized that some of the parameters in A0 are
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redundant and can be eliminated. This stage mainly outlines this process, and a brief

description of the rules of placing restrictions on the redundant parameters is as follows:

1. Given that each row of the transformation matrix A0 can be multiplied by a constant

without changing the structure of the model, one parameter in each row can be

normalized to one. However, there is a danger of normalizing the wrong parameter,

i.e. a zero parameter might be normalized to one. To overcome this problem, we

add tests of predictability using subsets of variables. Starting from the SCM with

the smallest order (the SCM with minimum p+ q), exclude one variable, say the Kth

variable, and test whether a SCM of the same order can be found using the K − 1

variables alone. If the test is rejected, the coefficient of the Kth variable is then

normalised to one, and the corresponding coefficients in all other SCMs that nest

this one are set to zero. If the test concludes that the SCM can be formed using the

first K − 1 variables only, the coefficient of the Kth variable in this SCM is zero, and

should not be normalised to one. It is worth noting that if the order of this SCM is

uniquely minimal, then this extra zero restriction adds to the restrictions discovered

before. Continue testing by leaving out variables K−1 and testing whether the SCM

could be formed from the first K − 2 variables only, and so on.

2. Any linear combination of a SCM(p1, q1) and a SCM(p2, q2) is a

SCM(max {p1, p2} ,max {q1, q2}). The row of matrixA0 corresponding to the SCM(p1, q1)

is not identified if there are two embedded scalar components with weakly nested or-

ders, i.e., p1 ≥ p2 and q1 ≥ q2. In this case arbitrary multiples of SCM(p2, q2) can be

added to the SCM(p1, q1) without changing the structure. To achieve identification,

if the parameter in the ith column of the row of A0 corresponding to the SCM(p2, q2)

is normalized to one, the parameter in the same position in the row of A0 corre-

sponding to SCM(p1, q1) should be restricted to zero. A detailed explanation of this

issue, together with an example, can be found in Athanasopoulos and Vahid (2008a).
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Stage III: Estimating the uniquely identified system

Finally, in the third stage, the identified model is estimated using FIML. As in Hannan

and Rissanen (1982), a long VAR was used to obtain the initial values of the parameters.

3 Variables and their time series properties

As was mentioned in the introduction, in this study we use a similar set of seven variables

as Kim and Roubini (2000) for modelling Canadian monetary policy; these variables are

listed in Table 1. The variables OPI and RU represent the foreign block. The OPI is

included to account for inflation expectations, mainly to capture the non-policy-induced

changes in inflationary pressure to which the central bank may react when setting monetary

policy. Hence, it is essential to include OPI in the monetary model to account for forward-

looking monetary policy (see Brischetto and Voss, 1999). It is also common in the monetary

literature of small open economies to use the US Federal fund rates as a proxy for foreign

monetary policy (see, for example, Cushman and Zha, 1997; Kim and Roubini, 2000;

Dungey and Pagan, 2000). Since Canada is an open economy and has relatively open

capital markets, it is also reasonable to assume that domestic interest rates are related to

US interest rates. The remaining five variables are the standard set of variables used in

the monetary literature to represent open economy monetary business cycle models (see,

for example, Sims, 1992). Y P and INF are taken as the target variables of monetary

policy, known as non-policy variables, while M1 and RC represent money market and

policy variables respectively and ER is the information market variable.

The data are collected from the International Financial Statistics (IFS), covering Jan-

uary 1974 to December 2007, excluding the period of the global financial crisis. The

variables are seasonally adjusted and in logarithms, except for inflation and interest rates

which are expressed in percentages. The results of unit root tests - Augmented Dickey

Fuller and Philips-Perron - of all variables over the whole sample show that the variables

are I(1) and I(0) in first-differences. In addition, Johansen’s co-integration test also pro-
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Table 1: Variables included in the Canadian Monetary Policy Models
Variable Description Abbrevation

Foreign
Oil Price World Oil Price Index, logs OPI
US Interest Rate Federal Funds Rate, Per cent RU

Canada
Output Industrial Production (SA), Logs Y P
Inflation Rate Consumer Price Index (% change per annum) INF
Money Monetary Aggregate M1 (SA), Logs M1
Interest Rate Overnight Rate Target, Per cent RC

Exchange Rate Exchange Rate (USA/CAN), Logs ER

Sources: International Financial Statistics

vides evidence of long run relationships among the variables. Given that the variables are

non-stationary and cointegrated, VAR or VARMA models with variables in first differences

will lead to loss of information in the long run relationships.8 Since the objective of this

study is to assess the interrelationships among the variables and to correctly identify the

effects of monetary shocks, all variables are detrended with the exception of the inflation

rate, which is expressed as a percentage change per annum in monthly CPI.9

4 Impulse response functions

Impulse response functions are estimated to assess the persistence and dynamic effects

of various macroeconomic shocks on policy and non-policy related variables. It is also

apparent that economically interpretable shocks are obtained to assess these responses and

these issues are briefly discussed below.

The effects of monetary policy shocks are analysed from impulse response functions

which are derived from pure moving average representations of models. For a VARMA(p, q)

8The choice between a VAR (unrestricted VAR) and a VECM (restricted VAR) depends on the economic
interpretation of the impulse response functions from the two specifications (see Ramaswamy and Sloke,
1997, for details). The impulse response functions generated from VECM models tend to imply that the
impact of monetary shocks is permanent, while the unrestricted VAR/VARMA allows the data series to
decide whether the effects of the monetary shocks are permanent or temporary. It is also common in the
monetary literature to estimate the unrestricted VAR model (see, for example, Sims, 1992; Cushman and
Zha, 1997; Bernanke and Mihov, 1998; Kim and Roubini, 2000).

9We are thankful to Professor Adrian Pagan for suggesting that in order to improve the modelling
framework, the variables in levels are replaced with de-trended variables.
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process

A(L)yt = M(L)υt (5)

the impulse responses can be obtained from

yt = Ξ(L)υt = υt +
∞∑
i=1

Ξiυt−i, (6)

where Ξi = Mi +
∑i

j=1 AjΞi−j, Ξ0 = Ik and υt is a white noise process with E(υt) = 0

and E(υtυ
′
t) = Συ. Similarly, we obtain the impulse responses from orthogonal shocks for

a reduced form VAR(p) model

Φ(L)yt = et (7)

with a pure VMA representation yt = Φ∗(L)et = et+
∑∞

i=1 Φ∗i et−i where Φ∗i =
∑i

j=1 ΦjΦ
∗
i−j

and Φ∗0 = IK .

In order to directly attribute the responses of variables to economically interpretable

shocks, we need to transform the exogenous shocks in equation (6) to a new set of orthog-

onal shocks. A traditional and convenient method is to use the Choleski decomposition,

as first applied by Sims (1980). A major criticism of the Choleski decomposition approach

is that the assumed Wold ordering of the variables is considered atheoretical. In contrast,

SVARMA and SVAR models use economic theory to identify the contemporaneous rela-

tionships between variables (see, for example, Bernanke, 1986; Sims, 1986; Blanchard and

Watson, 1986). The relationship between the reduced form VARMA disturbances (υt) and

the orthogonal shocks vt is

B0υt = vt, (8)

where B0 is an invertible square matrix, E(vt) = 0, E(vtv
′
t) = Σv and Σv is a diagonal

matrix. B0 is normalized across the main diagonal, so that each equation in the system

has a designated dependent variable. The innovations of the structural model are related

to the reduced form innovations by Συ = B−10 Σv(B−10 )′. The impulse responses from the

SVARMA are obtained from

yt = B−10 vt +
∞∑
i=1

ΞiB
−1
0 vt−i. (9)
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while the impulse responses from the SVAR are obtained as follows

yt = B−10 εt +
∞∑
i=1

Φ∗iB
−1
0 εt−i, (10)

where εt = B0et. For both the SVARMA and SVAR models, a recursive identification

structure on the contemporaneous matrix B0 is imposed and the structure is as follows

B0 =



1 0 0 0 0 0 0
b021 1 0 0 0 0 0
b031 0 1 0 0 0 0
b041 0 b043 1 0 0 0
0 0 b053 b054 1 0 0
b061 b062 b063 b064 0 1 0
b071 b072 b073 b074 b075 b076 1


(11)

with the variables ordered as in Table 1. The above contemporaneous structure is used

to estimate the orthogonal shocks for Canada where the sizes of these shocks actually

represent the one standard deviation of the corresponding orthogonal errors obtained from

the SVARMA and SVAR models.

The two foreign variables are identified recursively, with the assumption that the OPI is

contemporaneously exogenous to all other variables in the model, while the RU is assumed

to be contemporaneously affected by OPI. Y P is influenced contemporaneously only by

OPI, while INF is affected by both OPI and Y P . The M1 equation which represents

the demand for real money balances is contemporaneously dependent on Y P and INF .

The domestic monetary policy equation is assumed to be the reaction function of the

Bank of Canada which sets the interest rate after observing the current OPI, RU , Y P

and INF , reflecting an open economy Taylor rule. Finally, ER is seen as an information

market variable that reacts quickly to all relevant economic disturbances and hence is

contemporaneously affected by all the variables in the SVARMA and SVAR systems. With

an exception of the monetary policy equation, the rest of the restrictions are similar to

Kim and Roubini (2000). The identification restrictions on the monetary policy equation

differs from that imposed by Kim and Roubini (2000) who assumes that central banks

react immediately to OPI, M1 and ER but does not react immediately to the RU , Y P
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and INF . The justification of Kim and Roubini (2000) for this assumption is that within

a month a central bank is more concerned about the impact of global and foreign exchange

rate shocks on the economy than the impact of target variables and foreign monetary

shocks.10 However, in our extended data set we found such restrictions did not provide

plausible results where a contractionary monetary policy causes an immediate fall rather

then a rise in interest rate. On the other hand, we found the open economy Taylor rule

restrictions appear to provide theoretically consistent results which are discussed in detail

in Section 5.3.11

Apart from the restrictions imposed on the contemporaneous structure, no restrictions

are imposed on the lag structures of the SVAR model. On the other hand, due to the

identification issues discussed in Section 2, further restrictions are imposed on the SVARMA

model in order to identify a unique VARMA process.

5 Empirical results

In this section, we apply the VARMA methodology outlined in Section 2 to the Canadian

monetary model of seven variables. The impulse responses generated from the identi-

fied SVARMA and SVAR models are then used to assess the effects of various monetary

shocks.12

5.1 Identifying SVARMA and SVAR models

In Stage 1, we identify the overall order of the VARMA process and the orders of embedded

SCMs in the data for Canada. In Panel A of Table 2 we report the results of all the canonical

correlations test statistics divided by their χ2 critical values and this table is known as the

“Criterion Table”. If the entry in the (m, j)th cell is less than one, this shows that there

are seven SCMs of order (m, j) or lower in this system.

10Bhuiyan (2012) also imposed similar restrictions as Kim and Roubini (2000) but with an additional
assumption that the Bank of Canada also responds immediately to RU .

11We thank an anonymous referee for making this point clear.
12All computations are carried out using Gauss code, which is available from the authors upon request.
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From Panel A in Table 2 we infer that the overall order of the system is VARMA(2, 1).

Conditional on this overall order, the canonical correlation tests are employed to identify

the individual orders of embedded SCMs. The number of insignificant canonical corre-

lations identified are tabulated in Panel B of Table 2 which is referred to as the “Root

Table”. The root table shows the test results from identifying the individual orders of

the SCMs conditional on the overall order being VARMA(2,1). Since Bank of Canada

implemented inflation targeting from 1991 onwards, as robustness check we carried out

sub-sample analysis for the period January 1991 to December 2007 and the identified

model is also VARMA(2, 1).

We first identify two SCM(1,0)s and one SCM(0,1). As it is possible for an SCM(0,1)

to be observationally equivalent to an SCM(1,0), which leads to an identification problem

(see Tiao and Tsay, 1989, page 161), we proceed with only the autoregressive components.

Next, we find five SCM(2,0)s and five SCM(1,1)s. However, every SCM(m, j) nests all

scalar components of order (≤ m,≤ j). For each individual SCM(p1 < p, q1 < q), there will

be ξ = min{m− p1 + 1, j− q1 + 1} zero canonical correlations at position (m ≥ p1, j ≥ q1).

Therefore, a new SCM(m, j) is found for every increment above ξ, and hence only three of

the five SCMs found are new. We proceed with three SCM(1,1)s. Finally, we also find 2

new SCMs of order (2,1). The identified VARMA(2, 1) consists of two SCM(1, 0)s, three

SCM(1, 1)s and two SCM(2, 1)s.

Table 2: Stage I of the identification process of a VARMA model for the Canadian Monetary
System

PANEL A: Criterion Table PANEL B: Root Table
j j

m 0 1 2 3 4 m 0 1 2 3 4
0 137.58a 15.42 8.19 5, 45 4.07 0 0 0 0 0 0
1 3.55 1.26 1.22 1.21 0.93 1 2 5 6 6 7
2 1.26 0.97 1.08 1.08 0.89 2 6 10 12 12 13
3 1.26 1.08 0.98 0.95 0.92 3 6 12 17 19 19
4 1.19 1.07 0.97 1.02 0.91 4 6 12 19 23 26
aThe statistics are normalized by the corresponding 5% χ2critical values

16



Implementing Stage II of the identification process described in Section 2 has led to addi-

tional zero restrictions on the matrix containing the contemporaneous relationships between

the variables, and the canonical SCM representation of the identified VARMA(2, 1) of the

Canadian monetary model is given above, where yt = (OPIt, RU,t, Y Pt, INFt,M1t, RC,t, ERt)
′.

Among the variables, INFt and M1t are found to be loading as SCM(1, 0), while OPIt,

RU,t and RC,t were loading as SCM(1, 1) and Y Pt and ERt were loading on as SCM(2, 1).

We also ensured that the individual tests described in Section 2 do not contradict the

normalization of the diagonal parameters of the contemporaneous matrix to one.
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For the SVAR model, we found that twelve lags are necessary to capture all of the

dynamics in the data. The lag length specification tests suggest that either one (Schwartz

Bayesian Information Criterion, Hannan Quinn information criterion) or between three to
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four (Akaike Information Criteria, Likelihood Ratio test) lags should be included. Including

few lags may not be sufficient to capture the lag dynamics. The Ljung-Box and LM tests

for serial autocorrelation in the residuals show that at least twelve lags are required to

capture the dynamics in the data.13

To obtain the orthogonal shocks, we use the recursive identification structure described

in Section 4. Five additional restrictions were imposed on Canada and the over-identifying

restrictions were not rejected at the 1% significance level, thus suggesting that the identified

model specifications are appropriate.14

5.2 An out-of-sample forecast evaluation of VARMA versus VAR
Models

Before proceeding with the structural analysis we evaluate the out-of-sample forecasting

performance of the identified VARMA(2,1) model. As our main focus in this paper is

monetary policy analysis and not forecasting, the VAR(12) is selected for capturing all the

dynamics in the data based on statistical inference (as we have discussed in the previous

section). In order to perform a robust out-of-sample forecast evaluation of the VARMA(2,1)

we also include as alternatives VAR(4) and VAR(1) models. These are the models selected

respectively by the AIC and the SBIC. In Table 3 we report the model selection criteria

for all the models. The results show that if we were to choose a model based purely on

model selection criteria both the AIC and the SBIC would select the VARMA model over

any of the VAR alternatives.

We split our data in an in-sample period with 288 observations, covering January 1974

to December 1997, and an out-of-sample period with 120 observations, covering January

1998 to December 2007. We re-estimate all models in the in-sample period and forecast 1

to 12-steps-ahead. We then role all models forward (without re-estimating) and generate

13This result is not surprising as Kim and Roubini (2000) included six lags with twelve seasonal dummies
while Bhuiyan (2012) included eight lags and Dufour and Pelletier (2008) included twelve lags to their
respective SVAR models.

14The contemporaneous matrix B0 requires ((72 − 7)/2 = 21) restrictions for exact identification while
in (9) there are 26 restrictions imposed, leading to over-identification.
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Table 3: Model selection criteria for the estimated VARMA and VAR models.

AIC BIC
VARMA(2,1) -27.86 -26.88

VAR(1) -24.88 -24.39
VAR(4) -25.14 -23.21
VAR(12) -24.90 -19.13

1 to 12-steps-ahead forecasts until the end of the out-of-sample period. This generates

120 1-step-ahead forecasts, 119 2-steps ahead forecasts up to 109 12-steps-ahead forecasts,

which are used for forecast evaluation.

In Table (4) we present the percentage gains (losses for negative entries) in RMSFE

(Root Mean Squared Forecast Error) from forecasting with the VARMA(2,1) model com-

pared to the alternative VARs. We present the results for the two key economic indicators

for Canada Y P and INF , as well as for all the seven variables together. The results show

that the VARMA(2,1) model forecasts the macroeconomic variables considered in the mul-

tivariate system more accurately than the VAR counterparts. This is reflected by the large

gains in RMSFE from the VARMA model when considering all variables as shown in the

last row of each panel. The times that one of the VAR alternatives was more accurate

were very few. In these cases, as is the one with the INF variable forecasts generated

by the VAR(4), the loss from using the VARMA(2,1) instead of the VAR alternative were

very small in comparison to the gains. These findings are consistent with those in previous

studies such as Athanasopoulos and Vahid (2008b) and Dufour and Pelletier (2008) which

also evaluate the forecasting accuracy of VARMA models versus VARs.

5.3 Responses of policy and non-policy variables to various shocks

The dynamic impulse response functions of domestic variables to various independent

shocks are generated from the SVARMA and SVAR models and are revealed in Figures 1

to 6. The behavior of these responses over a period of 48 months is analyzed and discussed

in this section. The sizes of the shocks are measured by one-standard deviation of the
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Table 4: Out-of-sample percentage gains in RMSFE from forecasting h-steps-ahead with
a VARMA instead of the VAR alternatives. Negative entries correspond to a percentage
loss.

h
1 2 4 6 8 12 Average

VARMA(2,1) v VAR(1)

Y P 9.26 189.21 85.47 45.60 26.47 12.78 53.73
INF 4.17 217.35 144.74 100.36 70.96 37.58 93.12
All variables 8.65 1275.41 454.23 231.38 139.40 69.83 306.71

VARMA(2,1) v VAR(4)

Y P 24.99 25.87 37.29 39.09 39.62 39.02 36.08
INF 6.26 2.80 -0.74 -2.42 -2.60 -4.81 -1.85
All variables 26.85 24.77 26.03 24.54 24.50 26.93 25.38

VARMA(2,1) v VAR(12)

Y P 95.57 99.86 103.92 96.39 94.07 92.75 97.01
INF 18.95 15.41 20.05 22.32 14.56 -4.42 13.12
All variables 132.99 144.86 143.51 125.40 107.18 104.69 122.06

orthogonal errors of the respective models and are presented in Table 5 below. The sizes of

the orthogonal shocks in the SVARMA and SVAR models appear to be somewhat similar.

68% confidence bands for the impulse functions are computed via bootstrapping 10000

samples, using the bootstrap-after-bootstrap method of Kilian (1998).

Table 5: Magnitude of One Standard Deviation Shocks from the SVAR and SVARMA
Models

Model OPI RU Y P INF M1 RC ER

SVAR 0.164 0.183 0.173 0.115 0.162 0.155 0.103

SVARMA 0.155 0.229 0.182 0.124 0.203 0.182 0.082

5.3.1 Impulse responses to an oil price shock

The responses of the Canadian variables to an oil price shock are shown in Figure 1.

A positive OPI shock is expected to induce inflationary pressure on the economy. As

expected, both the US and Canadian monetary policies responded to higher oil prices,
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resulting in increasing policy rates, RU and RC . Both of these rates continue to rise for

about 18 months and peaked at around 6% and 3.5%, respectively. Since OPI is based on

the world market price, the rise in oil price leads to an inflationary pressure in the economy.

To combat the rise in INF and the demand for money, the Bank of Canada has responded

by increasing the RC .

Considering that Canada is a net oil exporter, although not significant a positive OPI

shock led to a positive movement in Y P within the first year, followed by a negative

response, which becomes significant after two years. This outcome is not surprising as

Canada, unlike many oil producers, does not heavily subsidize fuel. As observed in Figure

1, the rise in RC is higher than the rise in INF , leading to a positive rise in real interest

rate. Consequently, these changes could lead to an immediate appreciation of the Canadian

dollar, ER. Both a rise in RC and an appreciation of ER reduce the size of the positive

impact of an oil shock on Canadian output. After a year, output falls as a result of a fall in

consumption, investment and non-oil exports. It is evident that these expected movements

of variables, RU , RC , Y P and INF , to a positive oil price shock are well captured by

impulse responses generated by the SVARMA model.

5.3.2 Impulse responses to a US monetary policy shock

A positive RU shock, which is defined as an unanticipated monetary contraction, leads to

a rise in the US interest rate, resulting in excess demand for US currency in the foreign

exchange market. The US dollar appreciates, while the Canadian dollar depreciates. To

lean against the exchange rate depreciation, the Bank of Canada increases its policy rate

RC and consequently M1 and Y P fall. As observed in Figure 2, the rise in both RU and

RC peaked at around three months and then declined and reached a steady state after two

years, while M1 and Y P continue to fall for eighteen months. For about thirty months,

the RU response to an US monetary shock is larger than the RC responses. This interest

rate differential appear to be causing the Canadian exchange to have persistent negative

response. Since the Canadian output (Y P ) is also responding negatively to a positive RU
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Figure 1: Impulse responses to an oil price (OPI) shock

  

  
Notes: SVARMA and SVAR impulse responses are shown as unbroken black and blue lines respectively with 

68% confidence bands (obtained from 10000 bootstrap replications) shown as dashed lines. 
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shock, which could further contribute to the persistent negative effects on the exchange

rate. The depreciating Canadian dollar could also explain the immediate rise in INF in

response to the US monetary shock and the subsequent fall after a year.

Figure 2: Impulse responses to a US monetary (RU) shock

  

  

  
Notes: SVARMA and SVAR impulse responses are shown as unbroken black and blue lines respectively with 

68% confidence bands (obtained from 10000 bootstrap replications) shown as dashed lines. 
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5.3.3 Impulse responses to a domestic monetary policy shock

Canada is a small open economy, and hence its monetary policy changes are not expected

to affect the US interest rate - a proxy for the world interest rate. However, the impulse

responses generated by both SVARMA and SVAR models with 68% confidence bands

plotted in Figure 3 indicate significant but negative response of RU to a positive RC shock.

We believe that the observed negative movement in RU is not a response to the RC shock,

but maybe a response to the US Federal Reserve’s independent monetary policy measures

taken around this period.

According to Kim and Roubini (2000), if the identified monetary shock is indeed or-

thogonal, in the sense that it is not a systematic response to any shock, a tighter monetary

policy stance would lead to a rise in RC and a fall in M1, and subsequently these results

will be reversed due to persistent deflationary pressures in the economy. It is worth noting

that, as observed in Figure 3, the RC increases on impact following a contractionary mon-

etary shock and then falls, reaching subsequently after two years to a new lower steady

state, while M1 continues to decline for the first 18 months, followed by a rise thereafter.

An immediate fall in INF response to a contractionary monetary policy shock is only

observed for SVARMA response, where it declines smoothly, becoming persistent over the

entire 48 months’s horizon. As for the SVAR model, a price puzzle exist for the first six

months and a significant fall is only observed after thirty months.

A rise in RC followed by a fall in INF leads to both a rise in real interest rate and an

appreciation of the nominal exchange rate. That is, a positive interest differential in favour

of Canadian financial assets is associated with a persistent appreciation of the Canadian

dollar. This result is consistent with that of Eichenbaum and Evans (1995) and Grilli and

Roubini (1996). In response to a positive RC shock, Y P declines, indicating that Canadian

money is non-neutral in the short run. As indicated by both the SVAR and SVARMA

models, the negative Y P responses to an RC shock may be due to an increase in the real

cost of borrowing and the appreciation of the currency. Overall, the absence of price, output
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and exchange rate puzzles highlights the adequacy of the recursive SVARMA model for

identifying an appropriate monetary policy shock and producing impulse responses, which

are consistent with economic theoretical model predictions.

Figure 3: Impulse responses of variables to a domestic monetary (RC) shock

  

  

  
Notes: SVARMA and SVAR impulse responses are shown as unbroken black and blue lines respectively with 

68% confidence bands (obtained from 10000 bootstrap replications) shown as dashed lines. 
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5.3.4 Impulse responses to a money shock

A positive M1 shock is expected to trigger an increase in demand for money and this is

followed by a rise in Y P and INF . The rise in M1, Y P and INF are followed by a rise
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in RC and eventually a rise in ER. As observed in Figure 4, these outcomes are clearly

observed via both SVAR and SVARMA models.

Figure 4: Impulse responses of variables to a money (M1) shock

  

  
Notes: SVARMA and SVAR impulse responses are shown as unbroken black and blue lines respectively with 

68% confidence bands (obtained from 10000 bootstrap replications) shown as dashed lines. 
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5.3.5 Impulse responses to an exchange rate shock

RC is expected to decline in response to a positive ER shock, where an unanticipated ap-

preciation of currency should prompt policy makers to lean against currency appreciation.

Referring to Figure 5, as anticipated, a fall in the SVARMA RC responses is immediate,

lasting for about 6 months, before returning to a steady state. The currency appreciation

is expected to have two opposing effects on Y P . On the one hand, it decreases net exports

as they become more expensive than the imports. On the other hand, it reduces the cost of

production through lower prices of imported intermediate goods. These combined effects

transpiring through the demand and supply channels would determine the net influence of

an ER shock on Y P . It is noted that for both the SVAR and SVARMA, Y P responses
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decrease for the first few years. The reason for these models capturing the contractionary

output maybe due to a persistent currency appreciation followed by a transitory decline

in interest rate have led to a contractionary effect on output. INF is expected to respond

negatively to an ER shock due to lower import prices and production costs. This outcome

is observed in both the SVAR and SVARMA responses.

Figure 5: Impulse responses of variables to an exchange rate (ER) shock

  

  
Notes: SVARMA and SVAR impulse responses are shown as unbroken black and blue lines respectively with 

68% confidence bands (obtained from 10000 bootstrap replications) shown as dashed lines. 
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5.3.6 Impulse responses to a an output shock and a price shock

The RC response increases to a positive Y P shock. This outcomes is consistent with

the contractionary policy measure usually undertaken by central banks against expanding

economies. The expansion in Y P also induces inflationary pressure in the economy causing

an increase an in INF . An unexpected increase in output would cause an immediate

increase in the demand for money M1 and then followed by a fall due to the rise in

the interest rate. Figure 6 shows that all the above expected directions of responses are
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observed in the SVARMA model. However, a larger than expected increase in Y P leads

to an increase in RC , resulting in an ER appreciation. Such movements of responses are

clearly evident in both the models.

A positive shock to INF can be regarded as unanticipated inflationary pressure on the

economy. As a consequence, RC is expected to rise and demand for money M1 is also

expected to rise. Figure 6 shows the SVARMA RC response to a INF shock is gradual

and positive but less pronounced, while the corresponding SVAR response increases sharply

and then declines gradually. A comparison of both models’ responses shows that the SVAR

model tends to overstate the dynamic response of monetary policy to an inflationary shock.

Although unanticipated inflationary pressure resulting in depreciation of ER is expected,

a rise in RC can offset this negative effect. This outcome is captured neatly only by the

SVARMA model, while this response is positive and large in the SVAR model.

6 Conclusion

This paper builds a structural VARMA (SVARMA) model for investigating Canadian

monetary policy in two stages. Firstly, using the scalar component model (SCM) developed

by Athanasopoulos and Vahid (2008a), this paper identifies a VARMA model. Secondly,

imposing a recursive identifying structure on its contemporaneous matrix, it establishes the

identification conditions for a SVARMA model for Canadian monetary policy. Although

the VARMA model has long been known as the preferred model for monetary policy

analysis, the traditional VAR and SVAR models have been widely used, mostly due to

the difficulties associated with the identification and estimation of the former. The SVAR

model is included in this study for comparison purposes. To our knowledge, this is the first

paper to successfully construct a canonical SVARMA model for Canadian monetary policy

analysis. All computations are carried out using Gauss code, which is available from the

authors upon request.

The results of our investigation are very promising. The impulse response functions
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Figure 6: Impulse responses of M1, RC and ER to an output (Y P ) shock and to an
inflation (INF ) shock

Ouput shock Inflation shock 

  

  

  
Notes: SVARMA and SVAR impulse responses are shown as unbroken black and blue lines respectively with 

68% confidence bands (obtained from 10000 bootstrap replications) shown as dashed lines. 
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and the 68% confidence bands generated by the new SVARMA framework appear to have

resolved the anomalies commonly found in the empirical monetary literature on small open

economies. These anomalies include price, output and exchange rate puzzles. The pres-

ence of moving average components combined with an appropriate identification restric-

tions on the contemporaneous structure of the SVARMA model appear to have resolved

these economic anomalies. By contrast, the impulse responses and the 68% confidence

bands generated by the SVAR reveal the existence of the price puzzle. Overall, with an

exception of a monetary shock, the SVAR and SVARMA models generated qualitatively

similar impulse-response functions for other identified shocks. However, the widths of the

confidence bands for the impulse responses generated by the SVARMA model are narrower

than those generated by the SVAR. As highlighted by Dufour and Pelletier (2008) the MA

operator in the SVARMA model allows the reduction of the required AR order so we can

get more efficient estimates. This has led to generating both more precise impulse-response

functions and more accurate out-of-sample forecasts compared to the VAR. We recommend

that the SVARMA methodology be adapted to analyze the monetary policy of other open

economies as the potential gain from basing monetary policy on an adequate model is

immense, as shown by our investigation.
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