Grouped Goodness-of-Fit Tests for Binary Regression Models

by

Jana Dorthea Canary

BS (Mathematics), MS (Forest Ecology)

Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy (Biostatistics)

University of Tasmania, December 2013

Supervisors

Doctor Stephen Quinn

Associate Professor Leigh Blizzard

Professor David Hosmer

Research Supervisor

Professor Ronald Barry
Dedication

To my parents Willa and Jim, my husband Mark, and my daughter Jacqueline
Declaration of Originality

This thesis contains no material which has been accepted for a degree or diploma by the University or any other institution, except by way of background information and duly acknowledged in the thesis, and to the best of my knowledge and belief no material previously published or written by another person except where due acknowledgement is made in the text of the thesis, nor does the thesis contain any material that infringes copyright.

Signed: ... Date: ..
Statement of Authorship

This thesis can be made available for loan. Copying of any part of this thesis is prohibited for two years from the date this statement was signed; after that time limited copying is permitted in accordance with the Copyright Act 1968.

Signed: .. Date:
Acknowledgements

I would like to first thank my primary supervisor, Dr. Stephen Quinn, for his support. I feel fortunate to have had Steve as a supervisor. He was always willing to take time to work with me, to give carefully thought out comments on my work, and to deal with the challenges of working with someone on the other side of the globe. I am very appreciative of his efforts in guiding me through the thesis process.

I would also like to thank my other supervisors. First, thank you to Dr. Leigh Blizzard, who made it possible for me to come to Menzies and helped me to navigate through the steps of setting up a Ph.D. candidature remotely from Alaska. He also provided useful comments on my work and provided financial support through an NHMRC grant that, along with an Australian Postgraduate Award, made my research possible. I also would like to thank Dr. Ron Barry of the University of Alaska, who was kind enough to meet with me to discuss my work while I was in Alaska, particularly during the early stages of my candidature. Lastly, I would like to thank Dr. David Hosmer, who is an emeritus professor and an expert in the field of biostatistics. He kindly offered his time and advice, and I very much appreciate his help.

I would also like to thank several fellow students and staff (in no particular order) at Menzies whose support both in person and electronically made the process so much easier: Kara, Laura, Dawn, Peta, Oliver, Kathy, Karen, Petr, Barbara, Tracey, Steve, David, and Ben. Thank you for your advice, support, encouragement, and friendship. Also my friends in Alaska and Hobart who provided childcare when I needed it, chats, and support: Petra, John, Gordon, Nancy, Jay, Donie, Peter, Margaret, Trusten, William, Leslie, and Sharon.

Also, I would like to thank the two anonymous examiners of my thesis. Their thorough review and thoughtful comments were very helpful and encouraging.

Lastly I would like to thank my husband Mark Conde and daughter Jacqueline. I cannot thank Mark enough for his financial and emotional support, and for lively discussions about mathematics. And thank you to Jacqueline, for the backrubs, hugs, and understanding when I did not have time to do fun things. I hope to make it up to you soon.
Abstract

How well a proposed regression model fits the observed outcome data is a critical question. The answer may influence model selection, and the conclusions drawn. Summary goodness-of-fit (GOF) statistics are used to assess model fit. Pearson’s chi-squared GOF statistic \(X^2 \) is used to evaluate the fit of logistic regression models, but \(X^2 \) isn’t appropriate when the model contains continuous covariates. Other GOF statistics are applicable, including the Hosmer-Lemeshow (HL), Pigeon-Heyse \(J^2 \), and Tsiatis \(T \) statistics. All have similarities to \(X^2 \) and group data artificially.

Simulation studies assessing new GOF statistics for logistic models with continuous covariates often include HL for comparison. We know of no study that compares HL, \(J^2 \), and \(T \). We did so here, applying the same grouping method (deciles-of-risk) to all. Our results indicated that HL and \(J^2 \) followed their reported distributions, but \(J^2 \) did not. Its distribution was closer to \(J^2 \sim \chi^2(G-2) \), where \(G \)=groups, rather than the reported \(\chi^2(G-1) \). Assuming \(J^2 \sim \chi^2(G-2) \), \(T \) maintained the Type I error rate twice as often as HL and \(J^2 \). The rates of HL and \(J^2 \) were often lower than expected when dichotomous, quadratic, or interaction terms were included. The statistics had similar power to detect departures from a true underlying model.

The logistic model is the canonical generalized linear model (GLM) for binomial outcomes. Although many GOF statistics have been developed for logistic models, there are fewer for non-canonical GLM with binomial outcomes. The properties of the logistic model make the development of GOF statistics relatively straightforward, but it can be more difficult for non-canonical GLMs.

We considered whether HL, \(J^2 \), and \(T \) could be applied to non-canonical GLM with Bernoulli outcomes and continuous covariates. Our investigation found that HL and \(J^2 \) can be applied directly, but \(T \) cannot. We introduced an augmented version of the Tsiatis model and
generalised T, (T_g). We showed that under non-canonical links, $T_g \sim \chi^2(G)$. In a second simulation study, HL, J^2, and T_g were used to evaluate the fit of probit, log-log, complementary log-log and log binomial models. The deciles-of-risk method was applied. Type I error rates were consistently maintained by T_g, while those of HL and J^2 were often lower than expected if the model included dichotomous, quadratic, or interaction terms. Because the distributions of HL and J^2 varied, it was unclear how their degrees-of-freedom could be adjusted. The statistics had similar power to detect an incorrect model in most situations. An exception occurred when a log model was incorrectly fit to data generated from a logistic model; here T_g had more power than HL or J^2.
Table of Contents

Grouped Goodness-of-Fit Tests ... 1
for Binary Regression Models ... 1
Declaration of Originality .. 3
Statement of Authorship ... 4
Acknowledgements .. 5
Abstract ... 6
Table of Contents ... 8
List of Tables .. 12
List of Figures ... 14
Chapter 1 Introduction ... 15
 1.1 Background ... 15
 1.2 Research Questions ... 20
 1.3 Organization of Thesis ... 21
Chapter 2 Notation and Basic Concepts .. 22
 2.1 Notation ... 22
 2.2 Generalized Linear Models .. 22
 2.3 Exponential Family .. 23
 2.4 GLM for Binary Data .. 27
 2.5 Canonical GLM for Bernoulli Outcomes (Binary Logistic Regression) 30
 2.6 Non-Canonical Link Functions for Binary Outcomes ... 31
 2.6.1 Probit ... 31
 2.6.2 Log-log and Complementary Log-log .. 32
 2.6.3 Log Binomial ... 34
 2.7 Basic Concepts of Score Tests .. 35
Chapter 3 Literature Review ... 38
 3.1 Goodness-of-Fit Statistics for Binary Logistic Regression Models .. 38
 3.1.1 Deviance ... 38
 3.1.2 Pearson’s Chi-Squared .. 39
3.2 Goodness-of-Fit Statistics for Binary Logistic Regression Models with Continuous Covariates .. 40
 3.2.1 Hosmer-Lemeshow Goodness-of-Fit Statistic .. 41
 3.2.2 Tsiatis Goodness-of-Fit Score Statistic .. 44
 3.2.3 Pigeon-Heyse Goodness-of-Fit Test Statistic .. 47
3.3 Other GOF Statistics for Logistic Models with Continuous Covariates 50
 3.3.1 Goodness-of-Fit Statistics with Grouping Methods Based on Clustering 50
 3.3.2 Smoothing Methods for Testing the Fit of Logistic Regression 51
 3.3.3 Goodness-of-Fit Statistics for Logistic Models with Discrete Covariates ... 52
 3.3.4 Score Tests for Assessing the Fit of Logistic Regression Models 54
3.4 Studies Comparing the Performance of GOF Statistics for Binary Logistic Regression Models .. 57
3.5 Goodness-of-Fit Statistics for Non-Canonical GLM 59
 3.5.1 Statistics to Assess the Fit of Non-Canonical GLM with Discrete Covariates ... 59
 3.5.2 Goodness-of-Fit Statistics for Assessing the Fit of Probit Models with Continuous Covariates .. 61
 3.5.3 Assessing the Fit of Log Binomial Models ... 62
Chapter 4 Comparison of HL, J^2, and T when Assessing the Fit of Logistic Models 63
 4.1 Introduction .. 63
 4.2 Algebraic Comparison .. 64
 4.2.1 Hosmer-Lemeshow Goodness-of-fit Statistic .. 64
 4.2.2 Pigeon-Heyse Goodness-of-fit Statistic ... 65
 4.2.3 Tsiatis Goodness-of-Fit Statistic .. 65
 4.3 $HL \leq J^2$.. 67
 4.4 J^2 Can Be Much Larger Than HL .. 69
 4.5 Simulation Study Comparing HL, J^2 and T ... 70
 4.5.1 Simulation Methods ... 71
 4.5.1.1 General Simulation Methods .. 71
 4.5.1.2 Methods to Investigate the Null Distributions of HL, J^2, and T 72
 4.5.1.3 Methods for Comparing of the Null Empirical Rejection Percentages of HL, J^2, and T .. 75
4.5.1.4 Methods for Comparing the Power of \(HL, J^2, \) and \(T \) ...76

4.5.2 Simulation Results ..77

4.5.2.1 Distribution of \(J^2 \) ...77

4.5.2.2 Empirical Rejection Percentage Under the Null Hypothesis80

4.5.2.3 Power - Rejection Percentage Under the Alternative Hypothesis83

4.6 Examples ...86

4.7 Discussion ...88

Chapter 5 Proposed Goodness-of-Fit Statistic for Binary GLM with Non-Canonical Links ...91

5.1 Expanded Tsiatis model ...91

5.2 Generalized Tsiatis GOF Statistic ..93

5.3 Forms of \(T_G \) Under Several Common Link Functions ...96

5.4 Distribution and Degrees of Freedom of \(T_G \) ...97

5.5 Grouping Method ..101

5.6 Examples of Alternative Tsiatis and Generalized Tsiatis Models102

5.7 \(HL \) and \(J^2 \) for Binary GLM with Non-Canonical Links ...103

5.8 Simulation Study Comparing \(HL, J^2, \) and \(T_G \) Under Non-Canonical Links104

5.8.1 Simulation Methods ...104

5.8.1.1 General Simulation Methods ..104

5.8.1.2 Investigation of Null Distribution of \(HL, J^2, \) and \(T_G \) ..105

5.8.1.3 Empirical Rejection Percentage Under the Null Hypothesis106

5.8.1.4 Power ...113

5.8.2 Simulation Results ...114

5.8.2.1 Distribution of \(HL, J^2, \) and \(T_G \) Under Non-Canonical Link Functions114

5.8.2.2 Empirical Rejection Percentage Under the Null Hypothesis118

5.8.2.2.a Probit ..127

5.8.2.2.b Log-log ...127

5.8.2.2.c Complementary Log-log ...128

5.8.2.2.d Log ..129

5.8.2.3 Power ...129
5.8.2.3.a Probit .. 134
5.8.2.3.b Log-log ... 134
5.8.2.3.c Complementary Log-log ... 135
5.8.2.3.d Log .. 136
5.9 Examples .. 136
5.10 Discussion ... 139
Chapter 6 Overall Discussion ... 142
 6.1 Overview of the Chapter .. 142
 6.2 Broad View of Research .. 143
 6.3 Need For This Research .. 144
 6.4 Contribution and Significance of This Research ... 145
 6.5 Limitations of This Research .. 147
 6.6 Future Research .. 148
Appendix A Derivation of Terms for the Calculation of T_6.............................. 150
 A1 Canonical Logit Link ... 150
 A2 Non-Canonical Links .. 150
 A2.1 Probit Link (T_{Pr}) ... 150
 A2.2 Log-log Link (T_{LL}) .. 152
 A2.3 Complementary Log-log Link (T_{Ch}) .. 154
 A2.4 Log Link (T_{LB}) ... 156
Bibliography .. 158