USING ACACIA AS A NURSE CROP FOR
RE-ESTABLISHING NATIVE-TREE SPECIES PLANTATION
ON DEGRADED LANDS IN VIETNAM

Tran Lam Dong

Submitted in fulfilment of the requirements for the degree of
Doctor of Philosophy

SCHOOL OF LAND AND FOOD
UNIVERSITY OF TASMANIA

July, 2014
Declaration of Originality

I hereby declare that this submission is my own work and contains no material which has been accepted for a degree by the University or any other institution. To the best of my knowledge and belief, this thesis contains no material previously published or written by another person except where due acknowledgement is made in the text of the thesis, nor does the thesis contain any material that infringes copyright.

(signed): .. 02 July 2014

Authority of Access

This thesis may be made available for loan and limited copying in accordance with the Copyright Act 1968.

Statement regarding published work contained in thesis

The publishers of the papers comprising Chapters 3 and 4 hold the copyright for that content, and access to the material should be sought from the Journal of Tropical Forest Science and journal of Soil Research, respectively. The remaining non published content of the thesis may be made available for loan and limited copying in accordance with the Copyright Act 1968.
ABSTRACT

Acacia mangium, *A. auriculiformis* and their hybrid, the leguminous fast-growing tree species has been widely adopted as a nurse crop for re-establishing native-tree plantations on degraded lands in Vietnam, but with little success. This may be attributed to not fully understanding the site requirements of target native species and the potential for negative as well as positive between-species interactions. The most planted native species is *Hopea odorata* Roxb., a dipterocarp that is thought to be shade-tolerant. To resolve how best to apply and manage such a system of mixed-species silviculture, this study first investigated the resource requirements of *H. odorata* in its natural habitat and how degraded soils change under consecutive short-rotations of *A*. hybrid plantations. Plantings of *H. odorata* within circular and strip gaps in 3- and 2.5-yr-old *A*. hybrid plantations, respectively, were used to assess the growth and physiological responses of *H. odorata* to competition for light and water. The light gradients created in the circular-gap experiment and the different light condition in the strip-gap experiment were used to assess how changes in growth rate were associated with the efficiency of use of light by the *H. odorata*.

Site requirements for regeneration of *H. odorata* were investigated in its natural habitat in three representative 50 × 50 m inventory plots in a secondary evergreen natural forest in southern Vietnam. The upper canopy was dominated by four dipterocarp species; *H. odorata*, *Shorea roxburghii* G. Don., *Anisoptera costata* Korth., and *Dipterocarpus alatus* Roxb. ex G. Don. The prevailing stand structure supported the vigorous germination, but not development of *H. odorata* seedlings due to low levels of light near the forest floor. Seedling germination was supported when daily transmitted photosynthetically active radiation (PAR) was between 2.2% and 6.6%, but seedling
development was only observed when PAR was 11.4%. The slightly acidic sandy soils with low nutrient concentration were apparently not a constraint on growth of *H. odorata* seedlings given adequate light conditions. The results suggest that the re-establishment of *H. odorata* on degraded sites using nurse crops should be possible provided that high levels of shading are avoided.

The potential to improve soil conditions with *Acacia* hybrid was assessed on degraded gravelly and sandy soils in Central Vietnam, from second- or third-rotation plantations representative of five age classes (0.5- to 5-yr old) and adjacent abandoned lands as controls. Compared to abandoned land, stock of total soil carbon, total nitrogen, and exchangeable calcium, magnesium and sodium were significantly higher in some years of the 5-yr rotation. However, extractable phosphorus and exchangeable potassium were not affected. Electrical conductivity was significantly higher and bulk density was significantly lower in all ages. Soil $\text{pH}_{\text{CaCl}_2}$ was lower at ages 0.5 and 5 yrs, and $\text{pH}_{\text{H}_2\text{O}}$ at age 5 yrs. Within a rotation, most soil properties did not change significantly with plantation age, although they appeared to decrease during the first three years; total carbon then recovered to initial levels, but total nitrogen and exchangeable cations remained lower. Some soil properties were strongly related to gravel content and elevation, but not with growth rate. Thus consecutive plantings of short-rotation *Acacia* hybrid on degraded and abandoned land can lead to changes in some soil properties.

Growth and physiological responses of *H. odorata* to different environmental conditions created in a nurse-crop plantation were examined in a field experiment where *H. odorata* seedlings were planted within three 22 m-diameter gaps opened in a 3-yr-old *Acacia* hybrid plantation in Central Vietnam. At age 2 yrs, stem diameter, total height
and crown diameter of the *H. odorata* increased significantly from gap perimeter (GP) to gap centre (GC). This positive response correlated with significant increases in daily incident photosynthetically active radiation (PAR) from 24% to 61% of total incident PAR. Net photosynthetic rate at 1500 \(\mu \text{mol m}^{-2} \text{s}^{-1} \) \((A_{1500}) \) and stomatal conductance \((g_s) \) were significantly lower for trees near the GP than those near the GC. Light-saturated photosynthesis \((A_{\text{sat}}) \) was significantly lower for trees near the GP than GC at age 1 yr, but not at age 2 yrs. Apparent quantum yield \((\Phi) \), dark respiration \((R_{\text{dark}}) \), and photosynthetic biochemical parameters \((V_{\text{cmax}} \text{ and } J_{\text{max}}) \) were similar between treatments. Chlorophyll content, chlorophyll fluorescence \((F_v/F_m) \), and leaf N and P concentrations were also unaffected by treatment. Nevertheless, specific leaf area was higher in the GP than other treatments. Despite the substantial difference in PAR between treatments, trees near the GP received levels of irradiation \(>500 \mu \text{mol m}^{-2} \text{s}^{-1} \) for 12% of the day \(v \) 38% at the GC. Significant reductions of leaf water potential \((\Psi_{\text{leaf}}) \) at the end of the dry season in treatments close to the GP compared to those near the GC suggested competition for water between *H. odorata* and the acacia nurse trees, although pre-dawn \(\Psi_{\text{leaf}} \) remained \(>-0.5 \text{ MPa} \). Thus, despite being a species that regenerates naturally in shade, *H. odorata* quickly acclimates to much higher light environments.

Understanding how *H. odorata* alters its architectural traits and growth rate in response to changing light environments is essential when designing and manipulating mixed-species plantations containing this species. Seedlings of *H. odorata* were planted into the circular gaps referred to above, and in 5 and 7.5 m strip gaps within a 2.5-yr-old *A. hybrid* plantation. Crown structure, absorption of photosynthetically active radiation (APAR) and whole-plant light-use efficiency (LUE; above-ground biomass growth or wood growth per unit APAR) of the seedlings over a gradient of light across the circular gap were examined for two years. Biomass production increased exponentially from the
GP to the GC. This was largely due to an exponential increase in APAR and a minor increase in LUE. The large increase in APAR was associated with an increase in leaf area and a reduction in shading from the nurse trees. Conversely, APAR per unit leaf area decreased towards the gap centre, probably due to steeper branch and leaf angles in order to avoid high radiation. In the strip-gap planting, the PAR was similar to that at the perimeter of the circular gaps; however the light pattern was dominated by sun flecks in the strip gap and direct sunlight in the circular gap. While the LUE of the more shaded *H. odorata* trees in the strip gaps was much higher, this was not enough to make up for the much lower APAR and hence biomass production. This study shows that *H. odorata* is able to grow under a wide range of PAR and that the availability of PAR has a strong influence on its growth. While the strip gaps used in this study appeared to be too narrow, the circular gap indicated that nurse plantings are an effective silvicultural design for establishing *H. odorata* provided that competition for other resources is managed.

The study concluded that *Acacia* hybrid is a potential species for recovery of some key soil chemical and physical properties. It is a potential nurse crop for re-establishment of native-tree species on degraded lands. Although *H. odorata* is shade-adapted species, it has great plasticity to acclimate to a range of light environments. However for mixed-species systems using these species, interspecific competition for light and soil water between A. hybrid and *H. odorata* needs to be addressed during the design and then management of the plantations.
ACKNOWLEDGEMENT

This research would have been impossible without financial support of the John Allwright Fellowship and the project FST/2006/087 funded by the Australian Centre for International Agricultural Research (ACIAR) which I am very much indebted.

I would like to express my deep gratitude to my supervisors, Dr Chris Beadle, Dr Richard Doyle and Dr David Forrester for kindly guidance, assistance, and motivation in doing this research. I am also very much grateful to Dr Alieta Eyles for gas-exchange training, assistance and contribution in paper preparation, Mr Gath Oliver for guidance and assistance in soil laboratory work, and Dr Chris Harwood, Mr Vu Dinh Huong and Mr Trieu Thai Hung for useful advice in this research.

I am very much grateful to Prof Nguyen Xuan Quat and Dr Dao Cong Khanh for their helpful advice in experimental design and fieldwork. Special thanks to my colleagues in the Silviculture Research Institute of the Vietnamese Academy of Forest Sciences, Mr Phan Minh Quang, Pham Quang Tuyen, Nguyen Huy Hoang and Nguyen Xuan Giap, WB3 project in Thua-Thien-Hue province, Dong Giang Watershed Forest Management Unit in Binh Thuan province, and Forest Science Institute of South Vietnam for their assistances in fieldwork and laboratory work. Thanks to Mr Nguyen Van Phan and Mr Nguyen Van Minh in Phu Loc, Hue for permission to use their commercial acacia plantations for experiments.

I sincerely thank all staff members and friends within the School of Land and Food, Tasmanian Institute of Agriculture, and CSIRO Ecosystem Sciences in Tasmania for their assistance and sharing useful knowledge and experiences for this research.

Special thanks to my friends, family, my wife and son for being here with me for encouragement and moral support, greatly contributed to the accomplishment of this research.
TABLE OF CONTENTS

Chapter 1. INTRODUCTION ... 1
 1.1. Problem statement ... 1
 1.2. Objectives .. 5
 1.3. Outline of the thesis ... 6

Chapter 2. LITERATURE REVIEW .. 10
 2.1. Eco-physiology of Hopea odorata Roxb. ... 12
 2.1.1. Taxonomy .. 14
 2.1.2. Geographical and ecological distribution ... 14
 2.1.3. Ecological requirements .. 15
 2.2. The potential of using Acacia species as nurse crops .. 20
 2.2.1. Acacia as a pioneer species ... 20
 2.2.1.1. Why use Acacia in reforestation? .. 20
 2.2.1.2. Soil changes under acacia plantations ... 24
 2.2.1.3. Ecological concern of monoculture exotic acacia .. 40
 2.2.2. Acacia as nurse crop .. 42
 2.2.2.1. Nurse crop .. 42
 2.2.2.2. Nursing effects ... 43
 2.2.2.3. Negative effects of nurse crops .. 47
 2.3. Summary .. 49

Chapter 3. SITE CONDITIONS FOR REGENERATION OF HOPEA ODORATA IN
NATURAL EVERGREEN DIPTEROCARP FOREST IN SOUTHERN VIETNAM 52
 3.1. Introduction ... 54
 3.2. Materials and methods .. 55
 3.2.1. Study sites .. 55
 3.2.2. Sampling and sample analyses ... 55
 3.2.3. Stand structure .. 56
 3.2.4. Light environment .. 56
 3.2.5. Soils .. 57
 3.2.6. Data analysis ... 58
 3.3. Results ... 59
 3.3.1. Floristic richness and dominance .. 59
Chapter 4. IMPACT OF SHORT-ROTATION ACACIA HYBRID PLANTATIONS ON SOIL PROPERTIES OF DEGRADED LANDS IN CENTRAL VIETNAM

4.1. Introduction

4.2. Materials and methods

4.2.1. Location, climate and soil

4.2.2. Site selection

4.2.3. Sampling and sample analyses

4.2.4. Calculations

4.2.5. Statistical analysis

4.3. Results

4.3.1. Site

4.3.2. Soil properties – effects of consecutive short-rotation plantations

4.3.3. Effects of site and rotation age

4.3.4. Relationship between tree growth and soil properties

4.4. Discussion

4.4.1. Soil properties change after one to two short rotations

4.4.2. Soil properties change within a single short rotation

4.4.3. Nutrient stocks in gravelly soils

4.4.4. Tree growth and soil fertility

4.5. Conclusion

Chapter 5. GROWTH AND PHYSIOLOGY OF HOPEA ODORATA ROXB. PLANTED WITHIN CIRCULAR GAPS IN AN ACACIA HYBRID PLANTATION

5.1. Introduction

5.2. Materials and methods
Chapter 6. EFFECTS OF LIGHT AVAILABILITY ON CROWN STRUCTURE, BIOMASS PRODUCTION, LIGHT ABSORPTION AND LIGHT-USE EFFICIENCY OF HOPEA ODORATA ROXB. PLANTED IN GAPS IN A NURSE-CROP PLANTATION OF ACACIA HYBRID

6.1. Introduction .. 144
6.2. Materials and methods .. 146
 6.2.1. Experimental design .. 146
 6.2.2. Measurements and sampling .. 147
 6.2.3. Calculation .. 152
 6.2.4. Statistical analysis .. 154
6.3. Results .. 155
 6.3.1. Growth of A. hybrid .. 155
 6.3.2. Crown structure of H. odorata ... 155
 6.3.3. Biomass and leaf area of H. odorata ... 158
 6.3.4. Light interception and LUE .. 162
6.4. Discussion .. 164
 6.4.1. Growth of A. hybrid nurse crop .. 164
 6.4.2. Effects of light availability on crown structure of H. odorata 165
 6.4.3. Biomass production in relation to light interception and LUE 166
6.5. Conclusion .. 169
Chapter 7. CONCLUSION AND RECOMMENDATION 176

7.1. Site requirements of *H. odorata* and matching these with site conditions
developed under *A.* hybrid plantations .. 176

7.1.1. Light requirement and response to nurse acacia plantation 176
7.1.2. Soil moisture requirement .. 178
7.1.3. Soil nutrient and other properties .. 178

7.2. Recommendation for application of research results in degraded landscapes in
Vietnam .. 180

7.2.1. Assistance of regeneration of high value species in secondary forests 182
7.2.2. Re-establishment and management of native tree species plantation on
degraded lands ... 182
7.2.3. Site management for short-rotation commercial plantations 184

REFERENCES .. 186
LIST OF TABLES

Table 2.1 Total SOC content (%) in plantations of some acacia species 26
Table 2.2 Soil N content (%) in plantations of some acacia species 29
Table 2.3 Soil P content (%) in plantations of some acacia species 32
Table 2.4 Soil exchangeable cations and CEC in plantations of some acacia plantations .. 34
Table 2.5 Soil pH in plantations of some acacia species ... 36
Table 3.1 Dominant families, number of trees and number of species in each 2,500 m² plot.. 61
Table 3.2 Diversity indices .. 63
Table 3.3 Stand density, basal area and standing volume ... 65
Table 3.4 Mean values ± standard deviation of canopy openness, leaf area index (LAI), per cent transmitted photosynthetically active radiation (PAR), and number of regenerated Hopea odorata seedlings ... 67
Table 3.5 Mean values ± standard deviation of soil chemical and physical properties.. 69
Table 4.1 Silviculture applied to the plantations of A. hybrid used in this study 85
Table 4.2 Means and standard deviations of site and soil factors at each location 91
Table 4.3 Means, standard errors and significant differences# of soil properties in 0 – 20 cm topsoil of second- or third-rotation Acacia hybrid plantations and nearby abandoned lands ... 92
Table 4.4 Models of soil element concentration or soil nutrient stocks and some key properties of second- or third-rotation Acacia hybrid plantations 95
Table 4.5 Means and standard deviations of tree density, diameter at breast height, total height, basal area, standing volume and mean annual increment of Acacia hybrid plantations .. 96
Table 5.1 Soil properties at the experimental site .. 114
Table 5.2 Stem diameter, total height, crown length and crown diameter of the Acacia hybrid nurse crop during the experiment ... 121
Table 5.3 Transmitted photosynthetically active radiation (PAR) and annual increment (1st and 2nd yr) of stem diameter, total height and crown diameter of Hopea odorata planted in 22-m-diameter gap of a 3-yr-old Acacia hybrid plantation .. 125
Table 5.4 Parameters obtained from light-response and A-C\textsubscript{i} curves of *Hopea odorata* at age 1 and 2 yrs planted in a 22 m diameter gap within a 3 yr-old *Acacia* hybrid plantation ... 130

Table 5.5 Specific leaf area (SLA), leaf N and P, and photosynthetic pigment content (Chl a and b) of *Hopea odorata* planted in a 22-m diameter gap 131

Table 6.1a Crown structure: Crown length, number of live branches per tree, branch angle, total leaf area, leaf area density and leaf angle of *Hopea odorata* planted in a 22-m diameter gap within a 3-yr-old *Acacia* hybrid plantation 157

Table 6.1b Crown structure: crown length, number of live branches per tree, branch angle, total leaf area, leaf area density and leaf angle of *Hopea odorata* planted in 5 and 7.5 m strip gaps within a 2.5-yr-old *Acacia* hybrid plantation 158

Table 6.2 Annual biomass and leaf area increment (age 1 and 2 yrs) of *Hopea odorata* planted in a 22-m diameter gap within a 3-yr-old *Acacia* hybrid plantation 160

Table 6.3a Absorbed photosynthetically active radiation (APAR) and light-use efficiency (AGB-LUE) of *Hopea odorata* planted in a 22-m diameter gap 163

Table 6.3b Absorbed photosynthetically active radiation (APAR) and light-use efficiency (AGB-LUE) of *Hopea odorata* planted in 5-m and 7.5-m strip gaps 163
LIST OF FIGURES

Figure 3.1 Important value index (IVI), frequency, dominance and abundance of the most important species (IVI ≥ 5%) in the tree layer ... 62
Figure 3.2 Number of naturally-regenerated seedlings and saplings per hectare in different height classes .. 64
Figure 3.3 Diameter distribution of trees ≥ 10 cm DBH ... 66
Figure 4.1 (a) Map of the sampled plantations ... 84
Figure 4.2 Means and one-sided standard error bars of soil carbon and nutrient properties 93
Figure 5.1 Mean monthly temperature (°C) and rainfall (mm) at Hue weather station 114
Figure 5.2 Diurnal changes of mean photosynthetically active radiation (PAR) 122
Figure 5.3 Distribution of five-minute averages of photosynthetically active radiation 123
Figure 5.4 Diameter (D₀.₃), height (H₁) and crown diameter (D₃) of Hopea odorata 126
Figure 5.5 Light-saturated photosynthesis (A₁₅₀₀), stomatal conductance (gₛ) and intrinsic water-use efficiency (WUEᵢ, A₁₅₀₀/gₛ) of Hopea odorata ... 128
Figure 5.6 Relationship between light-saturated photosynthesis (A₁₅₀₀) and stomatal conductance of Hopea odorata .. 129
Figure 5.7 Photosynthetic light response curves of Hopea odorata .. 129
Figure 5.8 Diurnal changes of leaf water potential (Ψ_leaf, MPa) in the dry (a) and wet season (b) of Hopea odorata .. 133
Figure 6.1 Representations of the circular and strip gaps in plan view and vertical section of the Hopea odorata .. 151
Figure 6.2 Absorbed photosynthetically active radiation (APAR) (a), above-ground biomass (AGB; b) and wood growth (c) of Hopea odorata .. 161
Figure 6.3 Relationship between leaf area and absorbed photosynthetically active radiation (APAR) of Hopea odorata .. 162
Figure 6.4 Distribution of 5-min averages of photosynthetically active radiation (PAR, µmol m⁻² s⁻¹) in different intensity classes .. 169
ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACIAR</td>
<td>Australian Centre for International Agricultural Research</td>
</tr>
<tr>
<td>AGB</td>
<td>above ground biomass</td>
</tr>
<tr>
<td>A_{max}</td>
<td>maximum photosynthetic rate</td>
</tr>
<tr>
<td>APAR</td>
<td>absorption of photosynthetically active radiation</td>
</tr>
<tr>
<td>A_{sat}</td>
<td>light-saturated photosynthesis</td>
</tr>
<tr>
<td>BA_b</td>
<td>branch basal area</td>
</tr>
<tr>
<td>BD</td>
<td>bulk density</td>
</tr>
<tr>
<td>C:N</td>
<td>carbon:nitrogen ratio</td>
</tr>
<tr>
<td>C_a</td>
<td>ambient CO$_2$ partial pressure</td>
</tr>
<tr>
<td>chl</td>
<td>chlorophyll</td>
</tr>
<tr>
<td>C_i</td>
<td>intercellular CO$_2$ partial pressure</td>
</tr>
<tr>
<td>$D_{0.3}$</td>
<td>diameter at 0.3 m above ground</td>
</tr>
<tr>
<td>DBH; $D_{1.3}$</td>
<td>diameter at breast height</td>
</tr>
<tr>
<td>D_c</td>
<td>crown diameter</td>
</tr>
<tr>
<td>EC</td>
<td>electrical conductivity</td>
</tr>
<tr>
<td>Ex-Ca</td>
<td>exchangeable calcium</td>
</tr>
<tr>
<td>Ex-K</td>
<td>exchangeable potassium</td>
</tr>
<tr>
<td>Ex-Mg</td>
<td>exchangeable magnesium</td>
</tr>
<tr>
<td>Ex-Na</td>
<td>exchangeable sodium</td>
</tr>
<tr>
<td>Ext-P</td>
<td>extractable phosphorus</td>
</tr>
<tr>
<td>FIPPI</td>
<td>Forest Inventory and Planning Institute</td>
</tr>
<tr>
<td>F_v/F_m</td>
<td>maximum quantum yield of photosystem II</td>
</tr>
<tr>
<td>GC</td>
<td>gap centre</td>
</tr>
<tr>
<td>GP</td>
<td>gap perimeter</td>
</tr>
<tr>
<td>g_s</td>
<td>stomatal conductance</td>
</tr>
<tr>
<td>H_t</td>
<td>top height</td>
</tr>
<tr>
<td>IUCN</td>
<td>International Union for Conservation of Nature</td>
</tr>
<tr>
<td>IVI</td>
<td>important value index</td>
</tr>
<tr>
<td>J_{max}</td>
<td>the potential rate of electron transport</td>
</tr>
<tr>
<td>LA</td>
<td>leaf area</td>
</tr>
<tr>
<td>LAD</td>
<td>leaf area density</td>
</tr>
<tr>
<td>LAI</td>
<td>leaf area index</td>
</tr>
<tr>
<td>L_b</td>
<td>branch length</td>
</tr>
</tbody>
</table>
\(L_{bg} \) length of branch with green leaves
\(L_c \) crown length
\(\text{LUE} \) light-use efficiency
\(\text{LZ} \) lower crown zone
\(\text{MAI} \) mean annual increment
\(\text{MARD} \) Ministry of Agriculture and Rural Development of Vietnam
\(\text{MZ} \) middle crown zone
\(N_{\text{leaf}} \) leaf nitrogen concentration
\(P \) phosphorous
\(\text{PAR} \) photosynthetically active radiation
\(P_{\text{leaf}} \) leaf phosphorous concentration
\(R_{\text{dark}} \) dark respiration
\(\text{SD} \) standard deviation
\(\text{SLA} \) specific leaf area
\(\text{SOM} \) soil organic matter
\(\text{TC} \) total organic carbon
\(\text{TN} \) total nitrogen
\(\text{UZ} \) upper crown zone
\(V_{cmax} \) maximum rate of RuBP carboxylation
\(\text{VPD}_L \) vapour pressure deficit based on leaf temperature
\(W_b \) branch weight
\(W_l \) leaf weight
\(W_s \) stem weight
\(W_{\text{UUE}} \) intrinsic water-use efficiency
\(\theta_b \) branch angle from stem
\(\theta_l \) leaf angle from horizontal line
\(\Phi \) apparent quantum yield
\(\Psi_{\text{leaf}} \) leaf water potential
\(\#_b \) number of live branches