Please Note:

The Open Access Repository will be moving to a new authentication system on the 1st of November.

From this date onwards, account holders will be required to login using their University of Tasmania credentials.
If your current repository username differs from your University username, please email E.Prints@utas.edu.au so we can update these details on your behalf.

Due to the change, there will be a short outage of the repository from 9am on the morning of the 1st of November

Open Access Repository

Stochastic optimisation of America's Cup class yachts

Downloads

Downloads per month over past year

Mason, Andrew Phillip (2010) Stochastic optimisation of America's Cup class yachts. PhD thesis, University of Tasmania.

[img] PDF (Whole thesis)
whole_MasonAndr...pdf | Request a copy
Full text restricted
Available under University of Tasmania Standard License.

Abstract

This thesis describes the design and implementation of an optimisation system for America's Cup Class (ACC) yachts. The system, named VESPA, uses a measure of merit that closely approximates the actual America's Cup race format; a round-robin match-racing tournament, held over many races between a population of candidate designs, using a stochastic wind model. VESPA was used by the Alinghi team to provide design recommendations for the 2007 America's Cup.
The optimisation of racing yachts is a problem that has been considered resistant to full analysis due to its complexity. Consequently, attempts at yacht design optimisation to date have been restricted to simplified subsets of the problem. While Velocity Prediction Programs (VPP) have been widely used to provide details of sailing performance for one or more yachts, the statistical models on which these programs are based have not been sufficiently accurate to allow optimisation of hull shapes. Other efforts to automate yacht design optimisation have used an objective function that evaluates the performance of each boat using Computational Fluid Dynamic (CFD) analysis of the hull. This approach suffers from long execution times, which may result in the adoption of a restricted measure of merit, such as hull resistance at a small number of forward speeds, heel and yaw angles.
In order to permit the use of the chosen measure of merit while retaining acceptable performance, a sparse sample of designs, derived from a parent hull using a novel parametric transformation method, had their hydrodynamic characteristics calculated by the SPLASH potential flow code. The output from SPLASH was subsequently used to train a set of neural-network based hydrodynamic metamodels for use by the VPP. The need to assess a population of designs for the tournamentbased measure-of-merit makes the problem well suited to stochastic, population based optimisation methods. As a result, a Genetic Algorithm (GA) was chosen to perform the optimisation, using a parsimonious Race Modelling Program (RMP) to simulate a tournament of races based on performance data provided for each boat by the VPP.
Each component within the VESPA system was validated to ensure confidence in the optimisation results. Optimisation runs were performed over several months using multiple parent models to investigate the effect of changes to various design variables. Finally, a design optimised by VESPA was tank tested at 1/3 scale, confirming the improvements over its parent design predicted by SPLASH.
VESPA proved itself capable of making genuine design improvements to an existing parent model while retaining reasonable execution times. VESPA also revealed several unexpected insights into the nature of the solution space for the design of ACC yachts, including multiple optima and the potential for intransitivity in the solution when interactions between boats at rounding marks are considered.

Item Type: Thesis (PhD)
Copyright Holders: The Author
Copyright Information:

Copyright 2010 the Author - The University is continuing to endeavour to trace the copyright
owner(s) and in the meantime this item has been reproduced here in good faith. We
would be pleased to hear from the copyright owner(s).

Additional Information:

No access or viewing until 1 September 2012. After that date, available for use in the Library and copying in accordance with the Copyright Act 1968, as amended. Thesis (PhD)--University of Tasmania, 2010. Includes bibliographical references

Date Deposited: 19 Dec 2014 02:54
Last Modified: 15 Sep 2017 03:48
Item Statistics: View statistics for this item

Actions (login required)

Item Control Page Item Control Page
TOP