Predictive Models for Integrated Pest Management of the Leaf Beetle Chrysophtharta bimaculata in Eucalyptus nitens Plantations in Tasmania

Steven Gregory Candy

Submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy

University of Tasmania,
and
Cooperative Research Centre for Sustainable Production Forestry

December, 1999
Declarations

This thesis contains no material that has been accepted for a degree or diploma by the University of Tasmania or any other institution. To the best of my knowledge and belief this thesis contains no material previously published or written by another person except where due acknowledgment is made in the text of the thesis.

Steven G. Candy

This thesis may be made available for loan and limited copying in accordance with the Copyright Act 1968.

Steven G. Candy
ABSTRACT
The Tasmanian Eucalyptus leaf beetle, *Chrysophtharta bimaculata* (Coleoptera: Chrysomelidae) is the most important phytophagous insect pest of eucalypts in Tasmania regularly defoliating new season’s growth over large areas of forest. An integrated pest management (IPM) system is currently in operation to minimise economic losses from defoliation of *Eucalyptus nitens* plantations due to browsing by larvae. However, the utility of the IPM system has been limited by the lack of: (a) an efficient sampling scheme for population monitoring, (b) the ability to predict an ‘action threshold’ (i.e. the population density for which it is profitable to apply insecticide at a standard rate), and (c) the ability to predict *C. bimaculata* population phenology. This study attempted to rectify this situation by developing predictive models that were calibrated using data from a number of sources including that obtained from a caged-shoot, larval feeding trial and from stage-frequency sampling carried out by the author.

Sampling schemes for monitoring egg populations were investigated using (i) counts of the number of leaves occupied by one or more egg batches for a sample of shoots and trees where the total number of leaves on each shoot was unknown [‘occupied leaf count’ (OLC) sampling], (ii) counts of the number of occupied trees for a known total sample size (binomial sampling), and (iii) double sampling using a combination of both (i) and (ii). Novel statistical methods were employed in developing these sampling schemes. For OLC sampling, the current multi-stage technique for modelling the variance of the counts using either Taylor’s power law (TPL) or Iwao’s regression was compared to single-stage modelling using generalised linear mixed models (GLMMs). To do this, GLMMs were extended to incorporate a negative binomial variance function. Efficiency of estimation of TPL was improved by using a more accurate approximation to the variance of the marginal mean. For binomial sampling, William’s method III of handling over-dispersion in a binomial generalised linear model is shown to have theoretical and practical advantages over current methods that use simple linear regression.
Models of the growth of *E. nitens*, with and without browsing by larvae, were developed at the leaf, shoot, tree, and stand level. The models included (i) a leaf expansion model, (ii) a process model of the impact of larval browsing on total shoot leaf area incorporating (i) above and calibrated using data from the caged-shoot feeding trial, and (iii) a model of the impact of defoliation level on the growth of tree diameter and height calibrated using data from artificial defoliation trials. A method of predicting action thresholds for insecticide application from inputs of initial stand conditions, silvicultural regime, cost of control, stumpage value, and cash discount rate was developed. This involved the comparison of growth predicted from existing stand and tree growth models for *E. nitens* with that obtained by combining those models with the browsing and defoliation impact models (ii) and (iii).

Models of (i) egg and larval development rate as a function of ambient field temperature and (ii) the progression of the population through key life stages (egg to final instar larvae) were constructed. Maximum likelihood estimation was used for (i) based on interval-censored development times. Continuation ratio models for (ii), incorporating physiological time based on the models for (i) and calibrated using the stage-frequency data, were used to estimate time of peak occurrence of each of first, second, and third instar larvae. The models and estimation methods used are shown to have advantages over those currently used in population studies.

Finally, the practical application of this suite of predictive models for decision support within the leaf beetle IPM system was demonstrated. For a typical 15-year rotation pulpwood regime on a site of average quality with a discount rate of 8%, a cost of control of $35/ha, and a stumpage of $30/m3, a value of 0.3 occupied leaves per shoot was the recommended action threshold. In addition, since approximately 90% of defoliation is caused by the last two (i.e. third and fourth) larval instars any application of insecticide should not be delayed past the time of the peak in the number of second instar larvae. The time from the start of mass oviposition to this peak was predicted to be approximately 175 DD[5] where DD[5] is the day-degrees calculated with a 5°C lower threshold.
Acknowledgments

There are many people to thank for their assistance and support over the past seven years of work on this project. Firstly, I would like to thank my supervisors, Drs John Madden and Humphrey Elliott, for their many helpful suggestions, their reviews of the entire thesis, organising external funding, and for advocating this study within Forestry Tasmania and the Cooperative Research Centre as a task of high priority.

For partial reviews of the thesis, I am grateful to Drs Chris Beadle, Brian Cullis, Jane Elek, Libby Pinkard, David Ratkowsky, Peter Sands, Don Thompson, and Mr Geoff Morris.

Thanks are due to Sue Baker, Dr Jane Elek, Anna Greener, Natasha Beveridge, Dick Bashford, Nita Ramsden, Simon Brooks, Andrew Walsh, and Carolyn Ringrose for the establishment and measurement of the artificial defoliation trials. Thanks also to Dick Bashford who, with help from field staff, collected and collated the data from population monitoring. For assistance with my own trials, I am indebted to Sue Baker, Dick Bashford, Natasha Beveridge, Anna Greener, Michael Body, Bill Brown, Vin Patel, Steve Patterson, Ray McLeod, Tom Lynch, and Roland Murray.

For our many useful discussions I am also grateful to Jane Elek and Dick Bashford.

For help in understanding how The Farm Forestry Toolbox ‘ticks’, I am grateful to Adrian Goodwin and thanks also to Gerald Coombe who prepared the maps of Tasmania.

The completion of this thesis would not have been possible without the generous support of my employer, Forestry Tasmania. Funding for this study was also provided by the Intensification of Forest Management Program and the Cooperative Research Centre for Sustainable Production Forestry.

Finally, and most importantly, thanks to my wife, Chris, and daughters, Claire and Elise, who have patiently endured my pre-occupation with this project and the many late nights when I was incommunicado, particularly over the last two years. Without their wonderful support and encouragement the work represented by this thesis would not have been completed.
Predictive Models for Integrated Pest Management of the Leaf Beetle

Chrysophtharta bimaculata in Eucalyptus nitens Plantations in Tasmania

Steven G. Candy
School of Agricultural Science
University of Tasmania

1 INTRODUCTION
1.1 Introduction 1
1.2 The host species 3
1.3 The pest species 6
1.4 Integrated Pest Management 9
1.5 Scope of the study 11
1.6 Summary and major objectives 13

2 SAMPLING DESIGNS AND MODELS
2.1 Introduction 16
2.2 Multi-level sampling using occupied leaf counts 22
2.3 Binomial sampling 41
2.4 Double sampling 67
2.5 Discussion 76

3 LEAF, TREE, AND STAND MODELS FOR E. NITENS
3.1 Introduction 85
3.2 Leaf expansion models 86
3.3 Tree volume models 126
3.4 Stand- and tree-level growth models 130
3.5 Discussion 132

4 MODELLING THE IMPACT OF LARVAL BROWSING ON E. NITENS SHOOT GROWTH
4.1 Introduction 142
4.2 Dynamic models of the impact of phytophagous feeding on leaf and shoot growth 144
4.3 A response surface model for the caged-shoot experiment 152
4.4 A process/simulation model 178
4.5 Discussion 199
5 MODELS OF THE IMPACT OF SIMULATED BROWSING ON TREE DIAMETER AND HEIGHT GROWTH
5.1 Introduction 205
5.2 Artificial defoliation trials 209
5.3 Results 219
5.4 A model of the growth impact of defoliation 243
5.5 Model properties and application 252
5.6 Discussion 260

6 MODELS OF C. BIMACULATA DEVELOPMENT AND PHENOLOGY
6.1 Introduction 267
6.2 Models of development rate as a function of temperature : constant temperature 270
6.3 Models of development rate as a function of temperature : ambient field temperatures 277
6.4 Modelling population phenology using stage-frequency data 290
6.5 Predicting time of peak occurrence for the larval stages 308
6.6 Discussion 316

7 A DECISION SUPPORT SYSTEM FOR THE LEAF BEETLE IPM PROGRAM
7.1 Introduction 329
7.2 Economic and action thresholds 333
7.3 Economic value of population monitoring/control decisions 338
7.4 Predicting loss of harvest yield from larval browsing in a single season 340
7.5 The control decision for a monitored compartment 343
7.6 Determining generic action thresholds 344
7.7 Results 345
7.8 Cost-benefit analysis using The Farm Forestry Toolbox software program 358
7.9 Application of population phenology models to the scheduling of pre-control sampling and insecticide application 364
7.10 Discussion 364
7.11 Summary 372
7.12 Recommendations for future research and conclusions 373

References 375

Appendix A1 The application of generalised linear mixed models to multi-level sampling for insect population monitoring 404
Appendix A2 Generalisation of the equi-correlation AGLMM to two or more levels of nesting 435
Appendix A3 Description of the GENSTAT Procedure
Appendix A4 Proof that the estimator \(\hat{\mu} \) given by (2.31) is unbiased. 444
Appendix A5 Map of experimental sites 446
Appendix A6 Estimation of Gould’s Block experimental treatment contrasts using the linear model and OLS compared to the linear mixed model and GLS 447
Appendix A7 Comparison of maximum likelihood estimation with DEVAR’s least squares estimation using simulated field emergence data 453
Appendix A8 Stage-frequency data for *C. bimaculata* from two sites in the Florentine Valley, southwestern Tasmania 459
Appendix A9 Calculation of the growth impact of browsing using a ‘growth-effect event’ in *The Farm Forestry Toolbox* 460
Appendix A10 Instructions for *The Farm Forestry Toolbox* 463
Page references for equations 468
Page references for tables 468
Page references for figures 469
Glossary of acronyms 470