Library Open Repository

Mapping grazed vegetation communities on Macquarie Island using a binary ensemble classifier.

Downloads

Downloads per month over past year

Lucieer, A (2008) Mapping grazed vegetation communities on Macquarie Island using a binary ensemble classifier. In: 14th Australian Remote Sensing and Photogrammety Conference (ARSPC), 29 September-3 October 2008, Darwin. (Submitted)

[img]
Preview
PDF
14arspc_lucieer_224.pdf | Download (1MB)
Available under University of Tasmania Standard License.

Official URL: http://www.14arspc.com/

Abstract

This study implemented and applied a binary ensemble classifier for identification of grazed vegetation communities on Macquarie Island from very high resolution Quickbird imagery. Rabbit grazing has severely affected Macquarie’s unique sub-Antarctic vegetation communities. The aim of this study was to identify the grazed areas from Quickbird imagery to map their spatial extent. Seven different soft classification algorithms were applied to classify the image into grazed vs. ‘other’ classes. The maximum likelihood classifier, supervised fuzzy c-means classifier (Euclidean distance, Mahalanobis distance, and k-nearest neighbour), and three support vector machine classifiers (SVM) were applied. An ensemble classifier based on the consensus rule was used to combine the seven classification results. A very high classification accuracy of 97% was achieved with the ensemble classifier, identifying grazed areas and providing an estimate of classification uncertainty.

Item Type: Conference or Workshop Item (Paper)
Journal or Publication Title: Proceedings of the Australasian Remote Sensing and Photogrammetry Conference (14 ARSPC)
Date Deposited: 20 Jul 2008 23:53
Last Modified: 18 Nov 2014 03:44
URI: http://eprints.utas.edu.au/id/eprint/6980
Item Statistics: View statistics for this item

Repository Staff Only (login required)

Item Control Page Item Control Page