Library Open Repository

Proterozoic sedimentary exhalative (SEDEX) deposits and links to evolving global ocean chemistry

Downloads

Downloads per month over past year

Lyons, TW and Gellatly, AM and McGoldrick, PJ and Kah, LC (2006) Proterozoic sedimentary exhalative (SEDEX) deposits and links to evolving global ocean chemistry. Geological Society of America Memoir, 198. pp. 169-184.

[img]
Preview
PDF
lyons_et_al_198-10_final.pdf | Download (2MB)
Available under University of Tasmania Standard License.

Abstract

Sedimentary exhalative (SEDEX) Zn-Pb-sulfi de mineralization fi rst occurred on a large scale during the late Paleoproterozoic. Metal sulfi des in most Proterozoic deposits have yielded broad ranges of predominantly positive d34S values traditionally attributed to bacterial sulfate reduction. Heavy isotopic signatures are often ascribed to fractionation within closed or partly closed local reservoirs isolated from the global ocean by rifting before, during, and after the formation of Rodinia. Although such conditions likely played a central role, we argue here that the fi rst appearance of signifi cant SEDEX mineralization during the Proterozoic and the isotopic properties of those deposits are also strongly coupled to temporal evolution of the amount of sulfate in seawater. The ubiquity of 34S-enriched sulfi de in ore bodies and shales and the widespread stratigraphic patterns of rapid d34S variability expressed in both sulfate and sulfi de data are among the principal evidence for global seawater sulfate that was increasing during the Proterozoic but remained substantially lower than today. Because sulfate is produced mostly through weathering of the continents in the presence of oxygen, low Proterozoic concentrations imply that levels of atmospheric oxygen fell between the abundances of the Phanerozoic and the defi ciencies of the Archean, which are also indicated by the Precambrian sulfur isotope record. Given the limited availability of atmospheric oxygen, deep-water anoxia may have persisted well into the Proterozoic in the presence of a growing sulfate reservoir, which promoted prevalent euxinia. Collectively, these observations suggest that the mid-Proterozoic maximum in SEDEX mineralization and the absence of Archean deposits refl ect a critical threshold in the accumulation of oceanic sulfate and thus sulfi de within anoxic bottom waters and pore fluids-conditions that favored both the production and preservation of sulfi de mineralization at or just below the seafl oor. Consistent with these evolving global conditions, the appearance of voluminous SEDEX mineralization ca. 1800 Ma coincides generally with the disappearance of banded iron formations-marking the transition from an early iron-dominated ocean to one more strongly influenced by sulfi de availability. In further agreement with this conceptual model, Proterozoic SEDEX deposits in northern Australian formed from relatively oxidized fl uids that required reduced conditions at the site of mineralization. By contrast, the generally more oxygenated Phanerozoic ocean may have only locally and intermittently favored the formation and preservation of exhalative mineralization, and most Phanerozoic deposits formed from reduced fluids that carried some sulfide to the site of ore precipitation.

Item Type: Article
Keywords: Proterozoic, SEDEX deposits, sulfur isotopes, ocean chemistry, atmospheric oxygenation.
Journal or Publication Title: Geological Society of America Memoir
Page Range: pp. 169-184
Identification Number - DOI: 10.1130/2006.1198(10)
Date Deposited: 26 Sep 2007
Last Modified: 18 Nov 2014 03:13
URI: http://eprints.utas.edu.au/id/eprint/780
Item Statistics: View statistics for this item

Repository Staff Only (login required)

Item Control Page Item Control Page