Library Open Repository

Sources of variation in self-incompatibility in the Australian forest tree, Eucalyptus globulus

Downloads

Downloads per month over past year

McGowen, MH and Vaillancourt, RE and Pilbeam, D and Potts, BM (2010) Sources of variation in self-incompatibility in the Australian forest tree, Eucalyptus globulus. Annals of Botany, 105 (5). pp. 737-745. ISSN 0305-7364

[img]
Preview
PDF
McGowen2010AnnBot.pdf | Download (184kB)
Available under University of Tasmania Standard License.

Abstract

† Background and Aims One of the major factors affecting the outcrossing rate in Eucalyptus globulus is thought to be the inherent self-incompatibility (SI) level of the female tree. SI in this species is mainly due to late-acting pre- and post-zygotic mechanisms operating in the ovary, and not S alleles. This study aimed to assess the phenotypic variation in SI levels within E. globulus and determine its genetic control and stability across pollination techniques, sites and seasons. † Methods SI levels were estimated for 105 genotypes originating from across the geographical range of E. globulus over multiple years of crossing. Separate grafted trees of some genotypes growing at the same and different sites allowed the genetic basis of the variation in SI to be tested and its stability across sites and seasons to be determined. The SI level of a tree was measured as the relative reduction in seeds obtained per flower pollinated following selfing compared with outcross pollinations. Thus, if seed set is the same, SI is 0 %, and if no self seed is set, SI is 100 %. † Key Results The average SI in E. globulus was 91% and genotypes ranged from 8 to 100% SI. Most genotypes (.75 %) had SI levels .90 %. There were highly significant differences between genotypes and the within-site broad-sense heritability of percentage SI was high (H2 ¼ 0.80+0.13). However, there was evidence that growing site, and to a lesser extent season, can affect the expression of SI levels. Trees with low reproductive loads produced relatively more seed from selfed flowers. †Conclusions There is a strong genetic basis to the phenotypic variation in SI in E. globulus within a site. However, the level of SI was affected, but to a lesser extent, by the environment, which in part may reflect the higher probability of selfed zygotes surviving on sites or in seasons where competition for resources is less.

Item Type: Article
Keywords: Heritability, plasticity, resource allocation, SI, mating systems, forest tree.
Journal or Publication Title: Annals of Botany
Page Range: pp. 737-745
ISSN: 0305-7364
Identification Number - DOI: 10.1093/aob/mcq036
Additional Information: The definitive publisher-authenticated version http://www.oxfordjournals.org/ Copyright © 2010 Oxford University Press
Date Deposited: 23 Mar 2010 02:58
Last Modified: 18 Nov 2014 04:09
URI: http://eprints.utas.edu.au/id/eprint/9681
Item Statistics: View statistics for this item

Repository Staff Only (login required)

Item Control Page Item Control Page