THE EXPANDING EARTH
A SYMPOSIUM

Earth Resources Foundation, University of Sydney
February 10-14, 1981

Convener and Editor
S. WARREN CAREY
Professor Emeritus, University of Tasmania

Sponsored by
UNIVERSITY OF TASMANIA
GEOLOGICAL SOCIETY OF AUSTRALIA
AUSTRALIAN ACADEMY OF SCIENCE

Supported financially by
ESSO AUSTRALIA LIMITED
BROKEN HILL PTY LTD
PEKO WALLSEND LIMITED
ANDREW KUGLER JR
WESTERN MINING CORPORATION
WEST AUSTRALIAN PETROLEUM LTD
MIM HOLDINGS
THE SHELL COMPANY OF AUSTRALIA LTD
MOBIL CORPORATION OF NEW YORK
AUSTRALIAN ACADEMY OF SCIENCE
SYMPOSIUM OF THE GEOLOGY DEPARTMENT
UNIVERSITY OF TASMANIA

Convened by Professor S. Warren Carey

1. Glacial Sediments November 1955
 Principal Guest: Kenneth E. Caster, University of Cincinnati
 Proceedings not published

2. Continental Drift March 1956
 Principal Guest: Chester Longwell, Yale University

3. Genesis of the Lyell Schists November 1956
 Principal Guest: Francois Turner, University of California

4. Dolerite July 1957
 Principal Guest: Frederick Walker, University of Cape Town

5. Syntaphral Tectonics May 1963
 Principal Guest: Bruce Heezen, Lamont Observatory

6. The Expanding Earth February 1981, at the University of Sydney
 Principal Guest: Peter Smith, The Open University

ISBN 0 85901 209-3

Printed by Impact Printing (Vic.) Pty. Ltd., Brunswick
This symposium on Earth expansion was made possible through the help of Ken Richards and John Davidson of Esso Australia and John Elliston of Peko Wallsend, who organized the financial support of oil and mining companies, and of Professor Graeme Philip, Chairman of the Earth Resources Foundation, which hosted the meeting.

Organization, editing, and preparation of camera-ready copy was solely the responsibility of the convener. Refereeing proved difficult for it was found that plate-tectonics supporters tended to reject as naive, arguments supporting expansion, and vice versa. Hence I decided that opinions and interpretations should stand without screening, for after all, such is the purpose of a symposium. At the outset I took pains to emphasize that contributors denying or criticising Earth expansion would be welcomed. In the preparation of this volume, no paper or statement contrary to Earth expansion was in any way suppressed or reduced.

The format was changed from the octavo originally contemplated to A4 because many of the maps and diagrams submitted would not reproduce satisfactorily on the smaller page.

The papers have been grouped so that discussion of related topics fall together, but of course several range broadly and could have been differently grouped.

The historical introduction (Carey, Brunshweiler, Vogel) sets the background of the evolution of beliefs about the Earth through the millennia and the century, and the attempts to reconstruct the Archaean Earth.

Expansion models for the last two hundred million years can be directly related to present configurations, and hence differ in method from Precambrian models. Contributions by Owen, Dooley, Bailey & Stewart, Rickard, and Vogel & Schwab deal with the former, while in the next section Burrett, Embleton Schmidt & Fisher, Glikson, Crook, Kremp, the Termiers, and Gorai consider ancient configurations.

Interpretation of the Tethys is crucial, because plate-tectonics models imply thousands of kilometres of closure across this zone in contrast to expansion models in which the Tethys was transversely extensional. Crawford, Stöcklin, Ahmad, Plumb, Ćirić, Tassos, Brunnschweiler, Johnston, and Carey contribute to this debate.

The next section considers the Pacific Ocean, which according to plate-tectonics models, must have shrunk to half its area since the Permian (to make room for the opening of the Arctic, Atlantic, and Indian Oceans), whereas expansion models imply great area increase in that time. Davidson, Shields, Bevis & Payne, Iturralde-Vinent, and Tanner discuss aspects of this question.

The intrinsic nature of orogenesis is the most fundamental question of geology. Plate-tectonics theory considers orogenesis to be the result of many hundreds of kilometres of transverse shortening caused by subduction between converging plates. Many expansionists consider diapiric extrusion from the interior to be the primary cause, and that orogens widen during the process. Other expansionists, take an intermediate position invoking compression during the diastrophic phase. Subduction problems and diapirism are discussed by Tanner, Ramberg, Scholl & Vallier, Ćirić, Cecione, and Wezel.

In the next section three papers (Dachille, Shields, and Myers) attribute the expansion of the Earth to impacts of meteoritic bodies, asteroids, and comets.

Many of the papers touch on the rate of expansion, but in the next section three (Neiman, Talobre, and Afinov) consider this question specifically and attempt to quantify it, and Stewart sets quantitative limits derived from his earth model.

Dooley and Runcorn cite geophysical data contrary to the expansion model. Walzer & Maas discuss in depth the physical base of mantle convection, which is relevant both to expansion and conventional tectonic models. No papers were offered on pulsation theories of Earth expansion which however have several supporters (e.g. Steiner, Milanovskii, and Khain).

The final section discusses planetological (Taylor) and cosmological (Tryon, Carey) implications of Earth expansion, with short papers on relevant matters of entropy (Tassos) and fundamental dimensions (Parkinson).

In a closing review, the convener states the necessity of Earth expansion.
PARTICIPANTS

AHMAD, Fakhruddin, Jammu-Kashmir

ALLEN, R.L., Salmoit Mining

ANDREJEWSKI, A.J., Amo! Exploration Ltd

ARCHBOLD, N.W., Melbourne University

ARNOLD, G., Geopeko, Sydney

AUDEN, M., Technical and Field Surveys Pty Ltd

BAILEY, D.K., Reading University, England

BAINBRIDGE, A.H., Al Sbotsby Consultants

BARNELL, K.J., Amo! Exploration Ltd

BESTON, N., University of Wnesse

BESLEY, R.E., Union Oil Development Corporation

BEVIS, Michael, Cornell University

BIESER, L.M., Monash University

BINNS, R.A., CSIRO

BLOUW, V.J., Kiel, USSR

BORSOFF, J., Uranera Australia Pty Ltd

BOUNDY, S., Offshore Oil NL

BOURKE, D.J., Comalco Ltd

BRADSHAW, J., University of New South Wales

BROOK, J.W., Geopeko

BRUNNSCHMEIER, R.O., Consultant, Canberra

BULL, P.F., Amo! Iron Ore Corporation

BURRERT, Clive F., University of Tasmania

CAREY, S., University of Wnesse

CARMOY, J., Amo! Exploration Ltd

CECIONI, Giovanni O., University of Chile, Santiago

CHALLINGER, A., BP Australia Ltd

ČIRČ, Branislav, Geological Institute, Belgrade

CODD, D., Monelma Australia Pty Ltd

COTTON, B.J., CRA Exploration Pty Ltd

CRAWFORD, A.R., University of Canterbury, New Zealand

CROOK, Keith A.W., Australian National University

DAVIDHEILE, Frank, Pennsylvania State Univ., U.S.A.

DAVIDSON, G., Australian National University

DAVIES, H., Monash University

DAVIDSON, John K., Hobart, Tasmania

DEE, C., University of New South Wales

DEGELING, P., Geological Survey of New South Wales

DIESSEL, C.F.K., University of Wnesse

DOOLEY, John C., Bureau of Mineral Resources

DRIEVER, R.C., Amo! Iron Ore Corporation

EMBLETON, Brian J., CSIRO

ETER, R.T., Esso Australia Ltd

FISHER, N.I., CSIRO

FOUNTAI~, A.J., Amo! Iron Ore Corporation

GASKIN, Arthur J., CSIRO

GEORGE, C., Gold Copper Exploration

GESTER, P.W., Western Australian Petroleum Pty Ltd

GLIKSON, Andrew I., Bureau of Mineral Resources

GOLUYOT, Geophysical International

GORAI, Masa, Tokyo

GRAMHAM, J.M., Purnoo, Australia

GROVER, Helen Dee, Vienna

GUY, W.B., Kingston, Jamaica

HANSEN, L., Macquarie University

HARRINGTON, H.J., Bureau of Mineral Resources

HERBERT, C., Offshore Oil NL

HEWSON, R., Melbourne University

HINKO, A., South Australian Institute of Technology

HUNT, P., ABC - Science Unit

ITURRALDE-VINENT, Manuel A., Havana, Cuba

JEFFRIES, F.S., Esso Australia Ltd

JOHNSON, John B., Bureau of Mineral Resources

JONES, M., Gold Fields Exploration

KEMPSON, V., Rensse College of Advanced Education

KHAIAMI, R., Macquarie University

KORSHUN, R.J., Armidale College of Advanced Education

KREMP, Gerhard O.W., University of Wisconsin, Madison

LAUGHTON, C.A., BP Mining Development

LAVERING, I.H., Esso Australia Ltd

LLOYD, A.R., Asia Exploration Consultants, Singapore

MAAR, Z., Jena, East Germany

MARSHALL, B., New South Wales Institute of Technology

MASON, D.J., University of Newcastle

MASON, D.R., University of Newcastle

MAKER, A., CSIRO

MCNEE, I., Beach Petroleum

MOELL, Konrad H.R., University of Wnesse

MORTON, D., Esso Australia Ltd

MYERS, Lawrence St. Clair, St. Clair, US Navy

NEILANDS, J., University of Wnesse

NEUMAN, Vladimir B., Moscow, USSR

O'DRISCOLL, D.G., Sydney

O'DRISCOLL, E.S.T., Western Mining Corporation

OLLIER, C.D., New England University

OWEN, Hugh G., British Museum, London

PARKINSON, W.D., University of Tasmania

PAYNE, Barton, Cornell University

PEFEE, Johannes, Auerbach, West Germany

PHILIP, Greene M., University of Sydney

PLUMB, K.A., Bureau of Mineral Resources

RAPEL, S., Australian National University

RAMBERG, Hans, Uppsala University, Sweden

RAY, K.

RAYNER, B., Monash University

RICHARDS, Ken A., Esso Australia Ltd

RICHARDSON, R.L., Pako-Mallend Ltd

RICKARD, M.C., Australian National University

ROGERS, M.C., Geopeko

ROYLE, D.Z., Amo! Iron Ore Corporation

RUNCORN, S. Keith, University of Wnesse-on-Tyne

RUTLAND, R.W.R., Bureau of Mineral Resources

SCHIEFNER, Irwin, Geological Survey of N.S.W.

SCHOLL, David W., USGS, California

SCHWAB, Max, Salle-Wittenberg Univ., East Germany

SCHMIDT, D., University of Canterbu~y, New Zealand

SCHMIDT, P. W., Australian Museum

SCHMITT, D., USGS, California

SHIELDS, Oakley, Mariposa, California

SIMONS, B.

SKELELC, G., Esso Australia Ltd

SMALE, D., New Zealand Geological Survey

SMITH, Peter, The Open University, London

SOMM, G., Comalco Ltd

STANNORE, P., Esso Australia Ltd

STAWIT, A.L., Amo! Iron Ore Corporation

STOCKL, Jovan, Zurich

STUTCHBURY, R., Macquarie University

SUN, S., CSIRO

SUTHERLAND, F.L., Australian Museum

TALLEUR, J.R., US Geological Survey

TALOBRE, J.A., Paris

TANNER, William F., Florida State Univ., Tallahassee

TASSOS, Stavros T., National Observatory, Athens

TAYLOR, S. Ross, Australian National University

TERMIER, Henri, Paris

TERMEIER, Genevieve, Paris

THORNBY, N., CSIRO

THOMPSON, B.P., Geological Survey of Victoria

TRYON, Edward P., Hunter College, New York

UNFRED, D.W.

VALLE, Tracy L., USGS, California

VALSARDI, C., Minatome Australia Pty Ltd

VAIL, J.A., Hunter College, New York

VALLAS, John, West Australian Institute of Technology

WATSON, J.A., Western Australia Institute of Technology

WEST, D., Monash University

ZINCKE, E., University of New South Wales

ZILKOWSKI, K., West German University
Formal Opening by Sir Mark Oliphant

I gather that we are here for this symposium to bring together what evidence there is to support the concept of an expanding Earth, which could explain changes, over geological time, in the distribution of land and sea. For the dedicated, the exercise will be, with W. S. Gilbert, "Merely corroborative detail, to add artistic verisimilitude to an otherwise bald and unconvincing narrative." For those who accept the very recently orthodox version of continental drift, the idea conjures up sympathy with Alice in "Through the Looking Glass". Let me quote:

'I can't believe that' said Alice. 'Can't you?' the Queen said in a pitying tone. 'Try again: draw a long breath, and shut your eyes'. Alice laughed. 'There's no use trying', she said: 'one can't believe impossible things'. 'I dare say you haven't had much practice', said the Queen. 'When I was your age I always did it for half-an-hour a day. Why, sometimes I've believed as many as six impossible things before breakfast!'

The impressive list of contributors to the discussions makes it clear that there are believers outside the Tasmanian Apple Isle, though one Tasmanian, who skilfully argued, with logic and mathematics, that the Moon was but a ball of gaseous plasma, must have been discomfited when men landed on that satellite!

It was from Paul Dirac, in Cambridge, that I first heard put seriously the idea that the physical constants might change with time. In today's context, we learnt that it was possible to construct a logical theory of the Universe in which the constant of gravitation, G, decreased with time. All things held together by the mutual force of gravitation, must then expand with time. However, only a miniscule portion of the force between the atoms of solid or liquid is gravitational, so that in order to obtain an appreciable increase in the radius of the Earth, the electrical constants, responsible for interatomic forces, must also decrease. If nothing is constant, on a geological timescale, it becomes necessary to believe that the number of particles in the Universe is not about 10^80 or thereabouts, but is increasing or decreasing with time. I understand that Professor Carey wants continuous creation of fresh matter, Hoyle's concept in a new guise. This implies very fundamental changes in the present theories of the origin of the Universe and of its Hubble expansion.

*Twenty-five years ago, Sir Mark Oliphant, then Foundation President of the Australian Academy of Science, opened the Hobart Symposium on Continental Drift, convened by Professor Carey.

If the Earth expands with time, like an inflating balloon, the relative positions of all parts remain the same. Other forces must be involved to explain the established motions of the continents and their parts. In addition to sea-floor spreading, there must be continental spreading unless, for some subtle reason, new matter is created only in the liquid interior. It becomes necessary to assume that new matter is always exactly the same material as existing matter, that fresh atoms of silicon and oxygen are created within a crystal of quartz, for instance, retaining the existing geometry.

In some philosophical manner, I am attracted, irrationally I suppose, by concepts such as infinity, in space and time, forward and backward. I do not find continuous creation of matter repugnant, provided that there is an equivalent continuous disappearance. I was hopeful, when I first read of modern theories predicting the instability of the proton, that this might make expansion plausible. However, the calculated, and now also the measured half-life for such decay, greater than 10^{32} years, is almost infinitely longer than the age of the Universe. In his review of a book by Wesson, dealing with "Gravity, Particles, and Astrophysics" in Nature for 22 January, 1981, Davies comments on the attraction of 'variable G' theories, and says:

'This book is written in a style that leads one to believe there is a sort of grand, coherent theory of unconventional physics and cosmology existing alongside the more publicised one. It gives the impression of two sciences: the one to which most professionals subscribe, and another, almost the same in its predictions, but with subtle differences.

I must admit that I also am a rebel, attracted by the boldly unorthodox, and that I have a sneaking wish that the pursuits of present-day accepted cosmology be proven at least partially wrong. I remember in the 1920's, as a student in Adelaide, hearing a debate between Sir Douglas Mawson, Professor of Geology, and Wood-Jones, the Professor of Anatomy, concerning Wegener's ideas of continental drift. Wood-Jones wanted it to be true, for it helped explain the distribution of animals, plants, and their fossil remains. Mawson, the celebrated geological expert, thought it an absurd idea that rigid rocks could flow in that strange manner. Even then, I felt that Wood-Jones had the better of the argument! I was equally attracted by the
continuous creation theory of Fred Hoyle, and I remain hopeful that, in some form it will be revived, despite the cogent objections.

It is for this reason that I am behind Sam Carey in his determination to keep alive the concept of an expanding Earth. While the causes and the mechanism of expansion remain obscure, the idea explains everything geologists and geophysicists observe, and all that they theorize, except, perhaps, subduction. So, it is with great pleasure that I open this seminar.

NOTE

Owing to an airline strike Sir Mark was prevented from delivering this speech in person (Ed.)