Gold Deportment and Geometallurgical Recovery Model for the La Colosa, Porphyry Gold Deposit, Colombia

Stacey Elizabeth Leichliter
CODES/School of Earth Sciences

Submitted in fulfilment of the requirements for the Masters of Science in Geology
University of Tasmania
May 2013
Gold Deportment and Geometallurgical Recovery Model for the La Colosa, Porphyry Gold Deposit, Colombia

Approved by Supervising Committee:

Dr. Julie Hunt

Dr. Ron Berry
Declaration

"This thesis contains no material which has been accepted for a degree or diploma by the University or any other institution, except by way of background information and duly acknowledged in the thesis, and to the best of the my knowledge and belief no material previously published or written by another person except where due acknowledgement is made in the text of the thesis, nor does the thesis contain any material that infringes copyright."

Signed:

____________________ ______________________
Stacey Leichliter Date

Authority of Access

This thesis may be made available for loan. Copying and communication of any part of this thesis is prohibited for two years from the date this statement was signed; after that time, limited copying and communication is permitted in accordance with the Copyright Act 1968.

Signed:

____________________ ______________________
Stacey Leichliter Date
Statement of Ethical Conduct

“The research associated with this thesis abides by the international and Australian codes on human and animal experimentation, the guidelines by the Australian Government's Office of the Gene Technology Regulator and the rulings of the Safety, Ethics and Institutional Biosafety Committees of the University.”

Signed:

_____________________ _____
Stacey Leichliter Date

Statement regarding published work contained in thesis

“The publishers of the paper comprising Chapters 4 to 6 hold the copyright for that content, and access to the material should be sought from the respective journals. The remaining non published content of the thesis may be made available for loan and limited copying and communication in accordance with the Copyright Act 1968.”

Signed:

_____________________ _____
Stacey Leichliter Date
Co-Authorship

The following people and institutions contributed to the publication of work undertaken as part of this thesis:

Stacey Leichliter, CODES/University of Tasmania = Candidate
J. Hunt, CODES/University of Tasmania = Author 1
R. Berry, CODES/University of Tasmania = Author 2
L. Keeney, JK Tech = Author 3
P. Montoya, AngloGold Ashanti Colombia/JKMRC = Author 4
V. Chamberlain, AngloGold Ashanti Limited= Author 5
R. Jahoda, AngloGold Ashanti Colombia = Author 6
U. Drews, AngloGold Ashanti Colombia = Author 7

Author details and their roles:

“Development of a Predictive Geometallurgical Recovery Model for the La Colosa, Porphyry Gold Deposit, Colombia”, 2011, GeoMet 2011 Proceedings, AusIMM:

Information located in Chapters 4 to 6 -
Candidate was the primary author and author 1 contributed to the idea, its formalisation and development
Author 1, author 2, author 3, and author 4 assisted with refinement and presentation
Author 5, author 6, and author 7 offered general geology, metallurgy, and company assistance

Signed:

_____________________ __________________
Stacey Leichliter Date

We the undersigned agree with the above stated “proportion of work undertaken” for each of the above published (or submitted) peer-reviewed manuscripts contributing to this thesis:

Signed: ____________________ __________________
Julie Hunt Date
Supervisor
CODES/School of Earth Sciences
University of Tasmania

Bruce Gemmell Date
Head of School
CODES/School of Earth Sciences
University of Tasmania
ABSTRACT

The goal of this project was to develop a predictive geometallurgical recovery model for the La Colosa porphyry gold deposit using the gold deportment, analytical data (multi-element assays), mineralogy, and recovery data. The aim of geometallurgy is to reduce risk and uncertainty by understanding the variability within the ore body, to increase the confidence in forecasting and planning of production as well as optimizing recovery. Through different levels of testwork, such as reference, support, and proxy, relationships and predictions are made. Geometallurgy uses geology, statistics, and metallurgy to develop models that predict the behaviour or variability in the ore body due to geological or mineralogical changes.

The La Colosa porphyry gold deposit is a world-class deposit located in the Central Cordillera of Colombia. It is unusual because it is gold rich and has low amounts of copper and trace molybdenum. The deposit consists of multiple intrusions of early, intermineral, and late porphyritic phases of diorites, dacite, and quartz diorites that have intruded into the schist and hornfels basement rock. The dominant alteration assemblage is potassic with weaker amounts of potassic-calcic and sodic calcic alteration. Gold-related veins include quartz-sulfide (A type) and sulfide (S and D type) veins. Geologic aspects of the deposit were used to create a general geologic model for gold mineralisation at La Colosa that was used to help create a recovery model.

The gold mineralisation at La Colosa occurs predominantly as native gold, gold tellurides, and gold-silver tellurides, and in veins with a halo of disseminated (vein poor) gold mineralisation. Grain size, association, and deportment of the gold at La Colosa were
examined and the results used to understand the variability in the gold recoveries (cyanide leach, gravity, and flotation). Recovery data was used with leaching as the primary process, with tests such as shake leach and bottle roll analyses. Results of the geologic model, detailed visual logging, gold recovery testwork, multi-element analyses, and mineralogy testwork were used to build geometallurgical predictive models to estimate the gold recovery using multivariate statistical techniques, such as correlation analysis, Mahalanobis Distance, Principal Components Analysis (PCA), and multiple regressions. The steps used to develop the geometallurgical model were the following:

1. Identify anomalies using Mahalanobis Distance.
2. Perform correlation analysis to identify similar characteristics.
3. Perform a Principal Components Analysis (PCA) to constrain variability and develop discriminant diagrams for the data.
4. Define classes and perform linear and non-linear regressions to model the desired parameter.
5. Create process performance domains of the data and wireframe to check.
6. Evaluate and re-iterate the model as newer data is gathered.
7. Apply to resource or geologic block model.

By using the recovery and gold mineralogy data along with the multivariate statistical techniques, a predictive geometallurgy model to estimate gold recovery was constructed. This model can be incorporated with the planning and resource models for the site to efficiently extract and process the gold.
ACKNOWLEDGEMENTS

I would like to thank Julie Hunt and Ron Berry for supervising my thesis work and providing academic support throughout my graduate career. Their insight and knowledge have improved my project and training greatly. I am grateful to Maya Kamenetsky for her assistance with MLA instrumentation and data interpretation. I would like to thank Luke Keeney at JKMRC for his assistance and knowledge in geometallurgical modelling techniques. I also would like to thank the University of Tasmania’s ARC Centre of Excellence in Ore Deposits (CODES) for providing me academic support. I am also grateful for the University of Tasmania’s Central Science Laboratory and Karsten Goemann for use of the MLA to analyse my samples. I would like to say thank you to the AMIRA P843A GeM research team for their encouraging support and research into Geometallurgy.

I am extremely grateful to AngloGold Ashanti Limited, AngloGold Ashanti Colombia, and Cripple Creek and Victor Gold Mine for giving me the opportunity to study this amazing deposit. Without the financial support from AngloGold Ashanti Limited and Vaughan Chamberlain, there would be no project for me to study. I owe them a huge thank you. I would not be doing this without you. AngloGold Ashanti Colombia provided me with excellent training from all their geologists. Thank you so much to Rudi Jahoda and his geology team for teaching me everything about La Colosa. Special thanks go to Paula Montoya and Andres Naranjo for taking time out of their days to help me with my many questions. I am grateful to the entire La Colosa project team led by Jorge Tapia along with their chief metallurgist, Udo Drews.
Thank you to Cripple Creek and Victor Gold Mine for allowing me to fly around the world to study. I appreciate the workload my coworkers had to undertake while I was away. Thanks to Tim Brown in the Exploration Department for telling the company I was the best person for the project. I owe you so much. Thank you to the AngloGold Ashanti again for this opportunity.

I would finally like to thank my friends and family for their undying support and love through this project. I really appreciate all you do for me, and I couldn’t have done this without you. To my favourite editor, my Aunt Sue, I owe you a lot. Thank you to my family and friends for giving me the strength to go out into the wide world and have great experiences.

This project was funded by AngloGold Ashanti as part of the AMIRA P843A Geometallurgical Mapping and Mine Modelling (GeM$^\text{III}$) project with the University of Tasmania/CODES. AngloGold Ashanti Colombia provided the geological training, data, and samples for the project. AngloGold Ashanti Limited provided the financial and educational support for the project.

This research is part of a major collaborative geometallurgical project being undertaken at CODES and SES (University of Tasmania), JKMRC, BRC and CMLR (Sustainable Minerals Institute, University of Queensland) and Parker Centre CRC (CSIRO). The author acknowledges financial support and permission to publish from industry sponsors of the AMIRA International P843 and P843A GEM$^\text{III}$ projects – AngloGold Ashanti, Anglo American, ALS, Barrick, BHP Billiton, Boliden, CAE Mining (Datamine), Codelco, Geotek, Gold Fields, Golder Associates, ioGlobal, Metso Minerals, Minera San Cristobal, MMG, Newcrest, Newmont, OZ Minerals, Penoles, Quantitative Geoscience, Rio Tinto, Teck, Vale
and Xstrata Copper (MIM). Financial support is also being provided by the Australian
Government through the CODES ARC Centre of Excellence in Ore Deposits and CRC ORE.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declaration</td>
<td>iii</td>
</tr>
<tr>
<td>Authority of Access</td>
<td>iii</td>
</tr>
<tr>
<td>Statement of Ethical Conduct</td>
<td>iv</td>
</tr>
<tr>
<td>Statement Regarding Published Work</td>
<td>iv</td>
</tr>
<tr>
<td>Co-Authorship Statement</td>
<td>v</td>
</tr>
<tr>
<td>Abstract</td>
<td>vi</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>viii</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>xi</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xvi</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xxi</td>
</tr>
<tr>
<td>Glossary</td>
<td>xxii</td>
</tr>
<tr>
<td>Abbreviations Contained in Thesis</td>
<td>xxv</td>
</tr>
</tbody>
</table>

Chapter 1: Introduction

1.1 Study

1.1.1 Significance of Study

1.1.2 Methods

1.2 Background

1.2.1 Location

1.2.2 Exploration History

1.2.3 Ore Reserves

Chapter 2: Review of Regional Geology

2.1 Introduction

2.2 Regional Geology

2.3 Summary

Chapter 3: Review of La Colosa Geology

3.1 Introduction

3.2 Structural Setting of La Colosa

3.3 La Colosa Lithologies
3.3.1 Hornfels/Schist 16
3.3.2 Early Diorites 17
3.3.3 Intermineral Diorites 22
3.3.4 Late Dacites and Quartz Diorites 23

3.4 La Colosa Alteration 25
3.4.1 Alteration Assemblages 25
3.4.2 Potassic 25
3.4.3 Potassic-Calcic 26
3.4.4 Calcic-Sodic 26
3.4.5 Quartz-Sericite 27
3.4.6 Intermediate Argillic 28
3.4.7 Propylitic 28

3.5 La Colosa Vein Types 28
3.5.1 Early Biotite 29
3.5.2 Magnetite 29
3.5.3 Quartz-Sulfide 30
3.5.4 Quartz-Sulfide with Suture 31
3.5.5 Sulfide 31
3.5.6 Sulfide-Quartz 32
3.5.7 Chlorite and Actinolite 33

3.6 Summary 33

Chapter 4: Review of Porphyry Copper-Gold and Porphyry Gold Deposits 35
4.1 Introduction 35
4.2 Terminology 35
4.3 Porphyry Copper-Gold Deposit Models 37
4.3.1 Deposit Model 37
4.3.2 Alteration and Veining 37
4.3.3 Mineralisation 39

4.4 *Porphyry Copper-Gold Deposits* 40
4.4.1 Bajo de la Alumbrera 40
4.4.2 Bingham Canyon 42

4.5 *Porphyry Gold Deposit Models* 44
4.5.1 Deposit Model 44
4.5.2 Alteration and Veining 45
4.5.3 Mineralisation 46

4.6 *Porphyry Gold Deposits* 47
4.6.1 Marte 47
4.6.2 Refugio District (Verde and Pancho) 49

4.7 *Summary* 51

Chapter 5: Gold Mineralisation 55

5.1 *Introduction* 55

5.2 *Methods* 55
5.2.1 Introduction 55
5.2.2 Sampling and Preparation 56
5.2.3 Analysis 58

5.2.3.1 *Deposit Models* 58
5.2.3.2 *MLA Testwork* 59

5.3 *Gold Mineralogy* 61
5.3.1 Introduction 61
5.3.2 Types of Gold Mineralisation 61
5.3.3 Location of Gold Mineralogy

5.3.4 Native Gold Mineralisation
 5.3.4.1 Grain Size
 5.3.4.2 Mineral Associations
 5.3.4.3 Locking

5.3.5 Gold Telluride Mineralisation
 5.3.5.1 Grain Size
 5.3.5.2 Mineral Associations
 5.3.5.3 Locking

5.3.6 Gold-Silver Telluride Mineralisation
 5.3.6.1 Grain Size
 5.3.6.2 Mineral Associations
 5.3.6.3 Locking

5.3.7 Summary

5.4 Vein Rich and Vein Poor Mineralisation
 5.4.1 Introduction
 5.4.2 Methods
 5.4.3 Vein Rich Mineralisation
 5.4.4 Vein Poor Mineralisation
 5.4.5 Summary

5.5 Summary of Gold Mineralisation

Chapter 6: Predictive Geometallurgical Gold Recovery Model

6.1 Introduction

6.2 Gold Recovery Processes
 6.2.1 Gravity Concentration