Scission of Small Multiply Bonded Molecules using Transition Metal Complexes. A DFT Study.

by

Nigel John Brookes (BSc. Hons.)

Submitted in fulfilment of the requirement for the Degree of Doctor of Philosophy

UNIVERSITY OF TASMANIA

School of Chemistry
Hobart, Australia
March 2010
Declaration of Originality

This thesis contains no material which has been accepted for a degree or diploma by the University or any other institution, except by way of background information and duly acknowledged in the thesis, and to the best of the candidate's knowledge and belief no material previously published or written by another person except where due acknowledgement is made in the text of the thesis, nor does the thesis contain any material that infringes copyright.

Nigel J. Brookes
March, 2010
Statement of Authority of Access

This thesis may be made available for loan and limited copy in accordance with the Copyright Act 1968.

Nigel J. Brookes
March 2010
Abstract

The analysis described herein applies density functional theory to the activation and scission of the small multiply bonded molecules dinitrogen, carbon monoxide and carbon dioxide using transition metal catalysts.

Starting from the Laplaza-Cummins 3-coordinate molybdenum amide complex MoL3 (L = N(Bu)Ar) we have applied electronic structure methods in combination with the ONIOM approach to complete a comprehensive study of the effect of ligand bulk on the activation of dinitrogen. Our results show that not only is there expected destabilisation of the intermediate on the pathway, due to direct steric interactions of the bulky groups, but also there is significant electronic destabilisation as the size of the ligand increases. This latter destabilisation is due to the inability of the molecule to accommodate a rotated amide group bound to the molybdenum once the amide reaches a certain size.

Interestingly the Laplaza-Cummins catalyst is experimentally inactive towards carbon dioxide despite binding and cleaving one C-S bond in the similar CS2 molecule. We have used density functional theory (DFT) to show that, at first glance, the reaction of 3 L3Mo + CO2 should proceed smoothly to give L3Mo-O + L3Mo-CO-MoL3. However, initial coordination of the CO2 molecule to L3Mo does not take place because of the bending of CO2, the energy required to cross from the doublet to the quartet state, and the lower metal-CO2 binding energy compared to metal-CS2.

From this analysis we predicted that replacement of the central metal with a d5 transition metal would provide improved binding. Our calculations in this regard suggest that the tantalum analogue, TaL3, will successfully bind to CO2 in a mononuclear η2 arrangement and, importantly, will strongly activate one C-O bond to a point where spontaneously C-O cleave occurs. This strongly exothermic reaction takes into
consideration formation transition barriers, spin crossings, ligand bulk and even the DFT functional choice.

The product from this reaction, CO, is known to react with a similar 3-coordinate Ta(silox)$_3$ (silox = OSi(tBu)$_3$) complex, initially forming a ketenylidene (silox)$_3$Ta-CCO, followed by a dicarbide (silox)$_3$Ta-CC-(silox)$_3$ structure. We again applied DFT methods to this reaction revealing an intricate mechanism whereby the previously unknown intermediate [(silox)$_3$Ta-CO]$_2$ was identified. The mechanism has been extended to consider the effect of altering both the metal species and the ligand environment. Specifically we predict that introducing electron-rich metals to the left of Ta on the periodic table to create mixed metal dinuclear intermediates shows great promise, as does the ligand environment of the Cummins-style 3-coordinate amide structure.

Finally our interest in CO$_2$ reactions lead to the exciting oxygen-atom transfer from carbon dioxide to a Fischer Carbene at (PNP)Ir reaction by the Grubbs group. We have confirmed the mechanism for the important CO$_2$ reaction and have successfully rationalised the selective cleavage of the CS and CN bonds in OCS and PhNCO. The formation of the iridium-supported carbene itself has also been investigated and a fascinating autocatalytic mechanism has been discovered which nicely fits the observed experimental behaviour. This formation analysis has also been extended to consider the reactions with other linear and cyclic ethers that are known to form either carbenes or vinyl ether adducts. We have successfully rationalised the factors dictating reaction direction where both ether structural arrangement and (PNP) ligand environment contribute to the formation reaction outcomes.
Acknowledgements

I would like to thank my supervisor Prof Brian F. Yates for his assistance, guidance and support throughout my PhD candidature. Without his stable, understanding and patient approach in all aspects of my research, this PhD would not have been possible.

To my good friend and colleague Dr Alireza Ariafard for his amazing knowledge of all things in chemistry. His ability to visualise molecular orbital wavefunctions and electronic structure is simply stunning and I will be forever in his debt for assistance given so freely.

To Dr Michael Gardiner (who is more than just a Dr) for always making time to assist me. Thanks also to Prof Rob Stranger from our sister lab in Canberra and our Kiwi link Prof Peter Boyd, both who have helped greatly. To Dr David Graham for assistance with the first of my projects and finally to Laurie Wolfe for additional assistance with proof reading.

I would like to thank the friends I have made throughout this project. Particularly (soon to be Dr) Ruth Amos who I am sure will save the world at some stage and Dr Kirsty Hawkes for her love of maths – not! (and Richmond). To Brendon, Pete, Sarah, Ash, Michael Breadmore and everyone from the synthesis super group – thanks, its been great.

This project would not have been possible if not for the Australian Research Council (ARC) and the School of Chemistry who provided funding. I am also indebted to the National Computational Infrastructure (NCI) and the Tasmanian Partnership in Advanced Computing (TPAC) for a generous time grant on their parallel computing facility.

I would like to thank my family for support, my house mates, Bhoomi in particular, and finally and most importantly Jasmin.
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3LYP</td>
<td>DFT Functional</td>
</tr>
<tr>
<td>BMK</td>
<td>DFT Functional</td>
</tr>
<tr>
<td>BP86</td>
<td>DFT Functional</td>
</tr>
<tr>
<td>DEE</td>
<td>Diethyl ether</td>
</tr>
<tr>
<td>DFT</td>
<td>Density Functional Theory</td>
</tr>
<tr>
<td>DIO</td>
<td>1,4 dioxane</td>
</tr>
<tr>
<td>ECP</td>
<td>Effective Core Potential</td>
</tr>
<tr>
<td>G03</td>
<td>Gaussian 03 program</td>
</tr>
<tr>
<td>GBS</td>
<td>General Basis Set</td>
</tr>
<tr>
<td>GGA</td>
<td>Generalised Gradient Approximation</td>
</tr>
<tr>
<td>HF</td>
<td>Hartree Fock</td>
</tr>
<tr>
<td>HIPT</td>
<td>3,5-(2,4,6-i-Pr$_3$C$_6$H$_2$)$_2$C$_6$H$_3$</td>
</tr>
<tr>
<td>HOMO</td>
<td>Highest occupied Molecular Orbital</td>
</tr>
<tr>
<td>LDA</td>
<td>Local Density Approximation</td>
</tr>
<tr>
<td>LSDA</td>
<td>Local Spin Density Approximation</td>
</tr>
<tr>
<td>LUMO</td>
<td>Lowest Unoccupied Molecular Orbital</td>
</tr>
<tr>
<td>MECP</td>
<td>Minimum Energy Crossing Point</td>
</tr>
<tr>
<td>MGGA</td>
<td>Meta Generalised Gradient Approximation</td>
</tr>
<tr>
<td>MIT</td>
<td>The Massachusetts Institute of Technology</td>
</tr>
<tr>
<td>MM</td>
<td>Molecular Mechanics</td>
</tr>
<tr>
<td>MP2</td>
<td>Second order Moller-Plesset perturbation theory</td>
</tr>
<tr>
<td>NBE</td>
<td>n-butyl methyl ether</td>
</tr>
<tr>
<td>NBO</td>
<td>Natural Bond Orbital</td>
</tr>
<tr>
<td>ONIOM</td>
<td>Our N-Layered Integrated Molecular Orbital Model</td>
</tr>
<tr>
<td>PNP</td>
<td>Bis(2-diisopropylphosphino-4-methylphenyl)amide ligand</td>
</tr>
<tr>
<td>QMMM</td>
<td>Combined Quantum Mechanics and Molecular Mechanics</td>
</tr>
<tr>
<td>QMQM</td>
<td>Two level quantum mechanics calculation</td>
</tr>
<tr>
<td>THF</td>
<td>Tetrahydrofuran</td>
</tr>
<tr>
<td>TPSS</td>
<td>DFT Functional</td>
</tr>
</tbody>
</table>
Table of Contents

Declaration of Originality ... ii
Statement of Authority of Access .. iii
Abstract ... iv
Acknowledgements ... vi
Abbreviations .. vii
Table of Contents .. viii

Chapter 1 - An Introduction and Review .. 1
1.1 Preface... 2
1.2 Thesis Aims and Outline .. 5
1.3 Background Information ... 7
1.3.1 Dinitrogen Cleavage and the Laplaza-Cummins Catalyst 7
1.3.2 Carbon Dioxide Coordination and Activation ... 13
1.3.3 Oxygen Atom Transfer Reactions Involving CO\(_2\)... 19
1.3.4 Carbon Monoxide Scission using a 3-Coordinate Tantalum Species.................. 22
1.3.5 Computational Theory .. 25

Chapter 2 - The Influence of Peripheral Ligand Bulk on Nitrogen Activation by 3-Coordinate Molybdenum Complexes ... 31
2.1 Introduction .. 32
2.2 Computational Methods. .. 35
2.3 Results and Discussion .. 37
2.3.1 Reaction Geometries .. 39
2.3.1.1 Geometry of the Reactants (RX). .. 39
2.3.1.2 Geometry of the Encounter Complexes (EC). ... 40
2.3.1.3 Geometry of the Intermediate (IM). .. 41
2.3.1.4 Geometries of Transition Structures (TS). .. 44
2.3.1.5 Geometries of Final Products (PR). ... 44
2.3.1.6 Geometries of the Metal-Metal Dimers (D). .. 45
2.3.2 Effect of Proximal N-Substitents on the Dinitrogen Activation PES. 46
2.3.2.1 Dinitrogen Activation Potential Energy Surface. .. 46
2.3.2.2 Effect of ligand bulk on the Potential Energy Surface. 46
2.3.2.3 Electronic State of the Intermediate and the Activation Barrier. 51
2.3.2.4 Dimerisation. .. 52
2.4 Conclusions ... 53
Chapter 3 – Reactivity of CO$_2$ towards Mo[N(R)Ph]$_3$... 55
3.1 Introduction .. 56
3.2 Methods ... 58
3.3 Results and Discussion .. 60
 3.3.1 Reaction A. 1$_Q$ + CO$_2$. ... 63
 3.3.2 Reaction B. 4$_D$ + 1$_Q$. .. 73
3.4 Conclusion ... 78

Chapter 4 - Tuning the Laplaza-Cummins Catalyst to Activate and Cleave CO$_2$ 81
4.1 Introduction .. 82
4.2 Computational Details ... 84
4.3 Results and Discussion .. 86
 4.3.1 Coordination of CO$_2$ to TaL$_3$ (L = N(‘Bu)Ph) ... 86
 4.3.1.1 Mononuclear C-O scission by TaL$_3$. ... 90
 4.3.1.2 Dinuclear C-O scission by TaL$_3$. .. 94
 4.3.2 Alternate d2 Metals .. 96
 4.3.3 Mixed Metal Bridging CO$_2$ Dinuclear Structures ... 100
4.4 Conclusion ... 103

Chapter 5 - Scission of Carbon Monoxide using TaR$_3$, R = (N(‘Bu)Ph) or OSi(‘Bu)$_3$. A DFT
investigation ... 105
5.1 Introduction ... 106
5.2 Methods ... 109
5.3 Results and Discussion .. 111
 5.3.1 (Silox)$_3$Ta-CCO (6S) Formation ... 111
 5.3.2 Formation of Dicarbide (silox)$_3$Ta-CC-Ta(silox)$_3$ (9S) from ketenylidene 6S....... 125
 5.3.3 Analogous Amide Ta(N(‘Bu)Ph)$_3$+ CO Reaction ... 130
5.4 Conclusion ... 142

Chapter 6 - Cleavage of Carbon Dioxide by an Iridium supported Fischer Carbene. A DFT
Investigation ... 145
6.1 Introduction ... 146
6.2 Computational Details ... 148
6.3 Results and Discussion .. 149
 6.3.1 Formation of Iridium-Supported Fischer Carbene [Ir]=C(H)O’Bu 150
 6.3.2 Oxygen-atom transfer from carbon dioxide to a Fischer carbene at (PNP)Ir. 158
 6.3.3 Preferential cleavage of the CS and CN bonds in OCS and PhNCO 161
6.4 Conclusion ... 169
Chapter 7 - Factors Dictating Carbene Formation at (PNP)Ir ... 171

7.1 Introduction .. 172
7.2 Computational Details ... 175
7.3 Results and Discussion .. 177

7.3.1 Diethyl Ether (DEE) ... 178
 7.3.1.1 Reaction of DEE with (PNP)IrH₂ (1) ... 178
 7.3.1.2 Alternate reaction of DEE with (PNP)IrH₂ (1) ... 184
 7.3.1.3 Steric implications to the DEE with (PNP)IrH₂ (1) reaction 188
 7.3.1.4 Carbene Position from DEE reactions with (PNP)IrH₂ (1) 189

7.3.2 n-Butyl Methyl Ether (NBE) .. 192
 7.3.2.1 Reactions of NBE with (PNP)IrH₂ (1) ... 192
 7.3.2.2 Intermediates in the reactions of NBE with (PNP)IrH₂ (1) 198

7.3.3 Cyclic Ethers Tetrahydrofuran (THF) and Dioxane (DIO) 200
 7.3.3.1 Dehydrogenation of THF with (PNP)IrH₂ (1) ... 200
 7.3.3.2 Dehydrogenation of DIO with (PNP)IrH₂ (1) ... 208

7.3.4 BME + (PNP)IrH₂ (1) decarbonylation reaction ... 212

7.4 Conclusion ... 215

References .. 218

List of Publications

Parts of this work have been published (or in submission for publication).

1. The Influence of Peripheral Ligand Bulk on Nitrogen Activation by 3-Coordinate Molybdenum Complexes – A Theoretical Study using the ONIOM Method.

2. Cleavage of Carbon Dioxide by an Iridium-Supported Fischer Carbene. A DFT Investigation.

4. Scission of Carbon Monoxide using TaR₃, R = (N(tBu)Ph) or OSi(tBu)₃. A DFT Investigation.

5. Tuning the Laplaza-Cummins Catalyst to Activate and Cleave CO₂.

6. Factors dictating carbene formation at (PNP)Ir.