Automated Abundance Analysis of Underwater Video using Artificial Intelligence Techniques

By

Robert Christopher Fearn, B.Comp. (Hons)

Submitted in fulfilment of the requirements for the Degree of

Doctor of Philosophy

University of Tasmania

June 2010
Declaration

I, Robert Fearn, do hereby declare that this thesis contains no material that has been accepted for the award of any other degree or diploma in any tertiary institution, except by way of background information and duly acknowledged in the thesis. To the best of my knowledge and belief it contains no material previously published by another person, except where due reference is made in the text of the thesis, nor does the thesis contain any material that infringes copyright.

Signed: ...

Date: ..
Authority of Access

This thesis may be made available for loan and limited copying in accordance with the Copyright Act 1968.

Signed: ...

Date: ...
Statement of Co-authorship

The following publications form part of the work that was undertaken for this thesis:

Mr. Robert Fearn (70%) is the primary author. He conducted the research and prepared the material for publication.

Dr. Raymond Williams (15%) and Dr. Mike Cameron-Jones (15%) of the School of Computing and Information Systems, University of Tasmania, both provided general guidance and editing as supervisor.

Mr. Robert Fearn (70%) is the primary author. He conducted the research and prepared the material for publication.

Dr. Raymond Williams (10%) and Dr. Mike Cameron-Jones (10%) of the School of Computing and Information Systems, University of Tasmania, both provided general guidance and editing as supervisor.

Mr. Julian Harrington (5%) and Dr. Jayson Semmens (5%) of the Tasmanian Aquaculture and Fisheries Institute, University of Tasmania, both provided data and some advice in relation to marine research specific to underwater video.
We the undersigned agree with the above stated proportion of work undertaken for each of the above published or submitted manuscripts contributing to this thesis.

Signed: ... Signed: ...
Date: .. Date: ..
Dr. Mike Cameron-Jones Dr. Raymond Williams
Supervisor Supervisor
School of Computing and School of Computing and
Information Systems Information Systems
University of Tasmania University of Tasmania

Signed: ... Signed: ...
Date: .. Date: ..
Mr. Julian Harrington Dr. Jayson Semmens
Tasmanian Aquaculture and Tasmanian Aquaculture and
Fisheries Institute Fisheries Institute
University of Tasmania University of Tasmania
Statement of Ethical Conduct

The research associated with this thesis abides by the international and Australian codes on human and animal experimentation, the guidelines by the Australian Government's Office of the Gene Technology regulator and the rulings of the Safety, Ethics and Institutional Biosafety Committees of the University.
Abstract

This thesis discusses research into the various factors associated with the detection, classification and tracking of commercial scallops in underwater video (from a moving camera), for the purpose of computing abundance analysis statistics. Such statistics are sought by the Tasmanian Aquaculture and Fisheries Institute (TAFI) to support the sustainable management of Tasmanian commercial scallop fisheries. The use of video is preferable in terms of environmental impact to a traditional approach such as dredging, but the partially buried nature of the scallops makes the task very challenging.

The research led to the development of a multi-stage video analysis system using a range of existing artificial intelligence techniques from the fields of computer vision and machine learning. The system comprises five main stages: instance detection, feature extraction, instance classification, motion estimation and temporal instance tracking.

This system may be required to analyse many hours of video footage. Therefore we have explored many different computer-vision-related techniques and performed numerous comparisons on these techniques in an effort to maximise system throughput without compromising the overall accuracy achieved. This includes using the University of Southern California’s iLab Neuromorphic Vision C++ Toolkit (iNVT) [iLab, 2010], during the initial stages of processing, to quickly reduce the overall search space of our system down to the analysis of conspicuous or salient regions within the footage. In addition to this we also investigated solutions that allow our system to skip frames during analysis. This decreases the overall processing time as fewer frames are presented to the system, but can also adversely affect the accuracy of motion estimation. To overcome this we then use a simple and efficient outlier detection method capable of smoothing inconsistencies within the data prior to predicting instance locations in future frames.

The performance of each stage of our system has a direct impact on the performance of the remaining stages within the system. However of particular interest is the final stage which uses clustering to achieve temporal instance tracking, as it has become
evident that this stage is not only capable of tracking instances through time but is also capable of performing a second round of classification based on cluster density that plays a vital role in the elimination of false positive instances introduced in earlier stages. As a result our system performs well, being robust enough to overcome significant inconsistencies within the existing video footage provided by TAFI.
Acknowledgements

The scallop bed video footage used in this research was provided by the Tasmanian Aquaculture and Fisheries Institute, University of Tasmania.

The iLab Neuromorphic Vision C++ Toolkit software that forms the basis for the initial stage of this research was provided courtesy of the University of Southern California.

I would like to offer my sincerest thanks to my supervisors Mike Cameron-Jones and Ray Williams who have been extremely patient with me during this chapter of my life.

Thanks to my family, especially my Mum (Christine Schindler), who doesn’t have a computer but does like scallops. Without your incredible support this would not have been possible.

To Ken and Lachlan Upchurch I would like to say thank you for being such kind and loving friends and for providing me with such a wonderful home to study, work and live in during the first three years of this research.

Last but not least I would like to thank my partner Ian Kaye for waiting patiently on the sidelines for the past two years. Thank you for looking after both my beautiful dog Flint and me day-after-day and for being such an amazing cook!
Table of Contents

Abstract ... VII

Acknowledgements .. IX

Table of Contents ... X

List of Figures .. XIV

List of Tables .. XVIII

1 Introduction .. 1

2 Literature Review ... 4

 2.1 Introduction .. 4

 2.2 Underwater Video .. 4

 2.2.1 Image and Video Analysis ... 5

 2.2.2 Capturing Digital Video ... 5

 2.2.3 Establishing Ground Truth ... 5

 2.2.4 Visibility ... 6

 2.2.5 Technology .. 7

 2.3 Artificial Intelligence ... 9

 2.4 Computer Vision .. 9

 2.4.1 Object Detection and Recognition ... 9

 2.4.2 Reducing Search Space ... 10

 2.4.3 Feature Extraction ... 16

 2.4.4 Motion Tracking ... 18

 2.5 Machine Learning .. 19

 2.5.1 Supervised Learning .. 19

 2.5.2 Unsupervised Learning ... 19

3 Scallops Bed Datasets .. 25

 3.1 Introduction .. 25

 3.2 Scallops Video Footage ... 27

 3.2.1 Reducing Camera Undulation .. 29

 3.3 Dataset Overview .. 30

 3.3.1 Initial Experimental Datasets ... 30

 3.3.2 System Development Datasets ... 33

 3.3.3 System Evaluation Datasets ... 35

4 Determining Areas of Potential Interest .. 40
List of Figures

Figure 1-1: An overview of our abundance analysis system broken down into its logical stages of processing. ... 2

Figure 2-1: The phenomenon of Snell’s Window is caused by the refraction of light through the surface of the water. Image courtesy of Bonnie Peinar [2009] .. 7

Figure 2-2: A general overview of the saliency-based visual attention model, from [Itti et al., 1998]... 11

Figure 2-3: A source image (a) and the saliency map derived from it using Ezvision (b), the lightest areas of the saliency map are considered by Ezvision to be the most salient regions within the image. (c), (d) and (e) represent the colour, intensity and orientation channel maps used to derive the saliency map. .. 12

Figure 2-4: An example of erosion (b), performed on a binary source image (a)................... 13

Figure 2-5: An example of dilation (b), performed on a binary source image (a)................... 14

Figure 2-6: An example of thinning (b) performed on binary source image (a).................... 14

Figure 2-7: An example of skeletonisation (b) performed on a binary source image (a)........ 15

Figure 2-8: An example of thresholding (b) performed on a binary source image (a)........... 15

Figure 2-9: a) k initial “means” are selected (marked with a red circle) randomly (where $k = 3$ in this example) and each data element is associated to its nearest mean b) each mean is then adjusted to the location that is the centroid of its respective cluster c) clusters are recalculated by associating the data elements to the new nearest mean d) means are again recalculated to the centroid of their respective clusters; steps c and d are performed until the elements associated with each cluster remain the same. 21

Figure 2-10: An example of grid clustering using a top-down approach to finding clusters. 22

Figure 2-11: Reducing the coarseness of the cluster grid can help increase cluster definition. .. 23

Figure 2-12: A typical representation of a box plot diagram with fences indicating the threshold for outliers. .. 24

Figure 3-1: An original frame (left side) is manually enhanced using Adobe Photoshop® for the purpose of clarity within this thesis document (right side). .. 25

Figure 3-2: An example of colour footage (a) converted to its greyscale equivalent, then manually enhanced using Adobe Photoshop® (b) to improve the clarity of printed images within this document. .. 26

Figure 3-3: Manually extracted sections of the footage (shaded region) are used to generate the datasets in an effort to reduce the visible effects of an undulating drop camera... 30

Figure 3-4: An example of the “commercial” scallop bed video footage provided by TAFI... 32

Figure 3-5: An example of TAFI’s footage with an abundance of Doughboy scallops and shell debris.. 32

Figure 3-6: An example of TAFI’s recreational scallop bed footage. 33
Figure 4-1: A sample of the typical performance of Ezvision on TAFI’s footage when used with the default installation settings. The yellow markers indicate the detection of salient regions by Ezvision; the blue markers indicate the presence of commercial scallops. 41

Figure 4-2: A sample of the performance of Ezvision on TAFI’s footage when the visual-cortex-type parameter is set to variance. ... 45

Figure 4-3: A sample of the performance of Ezvision on TAFI’s footage when the maxnorm-type parameter was set to maxnorm. ... 46

Figure 4-4: The colour, intensity and orientation maps combined to form the saliency map generated by Ezvision using the image in Figure 4-3 when the maxnorm-type parameter is set to fancy. ... 48

Figure 4-5: The colour, intensity and orientation maps combined to form the saliency map generated by Ezvision using the image in Figure 4-3 when the maxnorm-type parameter is set to maxnorm. ... 49

Figure 4-6: A sample of the performance of Ezvision on TAFI’s footage when the maxnorm-type and vc-type parameters are set to maxnorm and variance respectively. 50

Figure 4-7: An example of salient regions detected by Ezvision within footage that has a large number of Doughboy scallops. ... 52

Figure 4-8: An example of the salient regions detected by Ezvision during the processing of footage with considerable quantities of marine flora. .. 52

Figure 4-9: The Scallop Classifier Interface is used as a tool to classify the instance coordinates generated by the Ezvision. ... 54

Figure 5-1: a) Original sub-image b) Sub-image converted to greyscale c) Gaussian blur/filter d) Contrast adjusted e) Thresholding performed f) All but one region is removed 8) PCA may be applied to rotate and centre the remaining region on its major axis. 56

Figure 5-2: The general optical flow within TAFI’s footage, assuming the camera is moving in a forwards linear motion and its altitude is fixed. ... 58

Figure 5-3: In a majority of cases candidate objects that overlap the perimeter of a given frame of footage will at some point in time become clearly visible within a frame. 59

Figure 5-4: 1-a) without contrast stretching (1-b) there is an increased likelihood that a region with become fragmented during segmentation. 2-b) Contrast stretching reduces the likelihood that regions that are close together will become joined (2-a). 63

Figure 5-5: (a) Figure 5-4 (a-1) dilated, (b) Figure 5-4 (b-1) eroded. ... 63

Figure 5-6: Two sub-images examples (a-1 and b-1) using histogram equalisation and a threshold of 10 in comparison to the same sub-images (a-2 and b-2) without histogram equalisation using the mean of the sub-image as the threshold. 64

Figure 5-7: a) The region intersecting the perimeter of the sub-image is too big to be a scallop instance b) The bottom-most left and right regions intersecting the perimeter of the sub-image are both scallop instances but are not the primary focus of this sub-image c) The bottom left region of image b is represented by Ezvision independently by as a separate set of instance coordinates. ... 65
Figure 5-8: 1-b and 2-b are representative of 1-a and 2-a after regions of less than 60 pixels have been removed... 66

Figure 5-9: Three examples of thinning the regions of both scallop and non-scallop instances
a) the original scallop region produces a reasonably well defined arc when thinned, b) the original scallop region exhibits a slight crescent like shape resulting in an almost completely flat line when thinned, c) a non-scallop region produces a thinned line that could be mistaken for a crescent shape of a scallop. .. 67

Figure 5-10: a) Example of 4x2 subdivision with no PCA applied b) Example of 4x2 subdivision with PCA applied, resulting in the region being centred and horizontally oriented along its major axis. .. 68

Figure 5-11: a) An ellipse has been correctly fitted to the perimeter of a scallop instance, b) An ellipse has been fitted within the shadow of a scallop instance instead of following the general ellipse shape of the shadow... 69

Figure 7-1: A magnified example of how our visualisation application represents the rate of optical flow during the motion estimation stage of our system................................. 86

Figure 7-2: An optical flow rate diagram generated by our visualisation tool using dataset A at five frame intervals with a cross-correlation template size of 50x 50........................ 87

Figure 7-3: An optical flow rate diagram generated by our visualisation tool using dataset A at five frame intervals with a cross-correlation template size of 100x 100.................... 88

Figure 7-4: An optical flow rate diagram for dataset A footage at intervals of five frames, using a cross-correlation sub-image size of 50x50 with a limited correlation space of 250x250 pixels. ... 90

Figure 7-5: The average optical flow rate of the first 40 frames of all the system evaluation datasets with a frame interval of five... 91

Figure 7-6: Four box plot outlier detection examples using frames from a) dataset A b) dataset B c) dataset E and d) dataset G. The points marked in red have been detected as outliers. The points in blue are the primary distribution of optical flow rates. 92

Figure 7-7: a) The detected outlier in this example is incorrect b) three outliers close to the primary distribution of points have been missed due to a larger than average number of outliers within this example. ... 93

Figure 7-8: An optical flow rate diagram of dataset C with a cross-correlation template size of 50x50 and a cross-correlation area of 250x250 with no outlier detection................... 94

Figure 7-9: An optical flow rate diagram of dataset C with a cross-correlation template size of 50x50 and a cross-correlation area of 250x250 with outlier detection..................... 95

Figure 7-10: The optical flow rate diagram for dataset C with a cross-correlation template size of 50x50 and a cross-correlation area of 250x250 produced using a second iteration of outlier detection performed on the results from Figure 7-9. 96

Figure 7-11: Using linear and bi-linear interpolation to generate values suitable for determining whether a 5x5 cross-correlation grid has a comparable accuracy to that of a 9x9 cross-correlation grid... 97
Figure 7-12: A typical representation of dataset A’s optical flow rate when a) a five frame interval is used b) a 20 frame interval is used. .. 99

Figure 7-13: A typical representation of dataset H’s optical flow rate when a) a five frame interval is used b) a ten frame interval is used. ... 100

Figure 8-1: Clusters within our system can be grown on a frame-by-frame basis. a) Three coordinates are presented in the same frame; therefore they must be three different clusters b) Overtime clusters 2 and 3 become neighbours but no cluster definition is lost. .. 105

Figure 8-2: When growing grid clusters, coordinate drift can result in additional clusters being detected. .. 105

Figure 8-3: Instances become easier to identify as get closer to the camera. 108

Figure 8-4: An example of our Cluster Tracking application using dataset I at frame 20 (4 steps). .. 112

Figure 8-5: An example of our Cluster Tracking application using dataset I at frame 50 (10 steps). .. 113

Figure 8-6: Clusters can be easily visualised and assessed using our Cluster Analysis application. Instance 6 is hidden within the cluster representing instance 3. Instance 4 is a false positive and instance 5 has been missed. a) Instance 2 has two clusters associated with it; without our application we would not be easily be able to determine whether the top and bottom-left corners of this instance were represented by one, two or three clusters b) The Cluster Analysis application allows multiple clusters to be associated with one instance. ... 114
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-1</td>
<td>The statistics for the initial experimental dataset.</td>
<td>31</td>
</tr>
<tr>
<td>3-2</td>
<td>Statistics for the second and third datasets generated from the TAFI footage with a clear separation of commercial and recreational scallop beds.</td>
<td>34</td>
</tr>
<tr>
<td>3-3</td>
<td>General statistics for datasets A through J.</td>
<td>36</td>
</tr>
<tr>
<td>5-1</td>
<td>The effect that the sub-image size and clean-up process have on the total number of scallop instances available for training and testing using the initial experimental dataset.</td>
<td>57</td>
</tr>
<tr>
<td>5-2</td>
<td>The effect that the sub-image size and clean-up process have on the total number of non-scallop instances available for training and testing using the initial experimental dataset.</td>
<td>57</td>
</tr>
<tr>
<td>5-3</td>
<td>The effect sub-image size has on scallop instances during the clean-up process, datasets A to J combined.</td>
<td>59</td>
</tr>
<tr>
<td>5-4</td>
<td>The effect sub-image size has on non-scallop instances during the clean-up process, datasets A to J combined.</td>
<td>60</td>
</tr>
<tr>
<td>5-5</td>
<td>A summary of Table 5-3 and Table 5-4 with the inclusion of the overall instance gain of scallop and non-scallop instances as the sub-image size increases.</td>
<td>60</td>
</tr>
<tr>
<td>6-1</td>
<td>The average performance of our six chosen classifiers on the feature input combinations outlined in Table 6-2, grouped by classifier.</td>
<td>72</td>
</tr>
<tr>
<td>6-2</td>
<td>The average performance of our six chosen classifiers on the feature input combinations outlined in Table 6-1, grouped by feature input combination.</td>
<td>72</td>
</tr>
<tr>
<td>6-3</td>
<td>Further analysis of the best performing classifiers and input combinations on our initial dataset.</td>
<td>73</td>
</tr>
<tr>
<td>6-4</td>
<td>The best performing subdivision combinations 1x5 and 6x4 used as feature inputs in conjunction with the previous best performing feature input combinations and classifiers.</td>
<td>75</td>
</tr>
<tr>
<td>6-5</td>
<td>The distribution of scallop and non-scallop instances in the commercial and recreation datasets after the clean-up process.</td>
<td>77</td>
</tr>
<tr>
<td>6-6</td>
<td>The performance of the commercial scallop bed system development dataset during classification with no subdivision feature inputs.</td>
<td>77</td>
</tr>
<tr>
<td>6-7</td>
<td>The performance of the recreational system development dataset during classification with no subdivision feature inputs.</td>
<td>78</td>
</tr>
<tr>
<td>6-8</td>
<td>The average performance of the commercial scallop bed system development dataset during classification with subdivision feature inputs of 1x5 and 6x4.</td>
<td>79</td>
</tr>
<tr>
<td>6-9</td>
<td>The average performance of the recreational scallop bed system development dataset during classification with subdivision feature inputs of 1x5 and 6x4.</td>
<td>79</td>
</tr>
<tr>
<td>6-10</td>
<td>The classification averages of all ten system evaluation datasets by classifier using the greyscale and binary invariant moments, DTC and x, y feature inputs.</td>
<td>80</td>
</tr>
</tbody>
</table>
Table 6-11: The average performance of the system evaluation datasets during classification using the greyscale and binary invariant moments, DTC and x, y feature inputs........ 81
Table 6-12: The average classification accuracy of the system evaluation datasets, grouped by classifier, using the greyscale and binary invariant moments, DTC, x, y and a 1x5 subdivision feature inputs... 81
Table 6-13: The average classification accuracy of the system evaluation datasets, grouped by dataset, using the greyscale and binary invariant moments, DTC, x, y and 1x5 subdivision feature inputs... 82
Table 6-14: The average classification accuracy of the system evaluation datasets, grouped by classifier, using the greyscale and binary invariant moments, DTC, x, y and a 6x4 subdivision feature inputs... 82
Table 6-15: The average classification accuracy of the system evaluation datasets grouped by dataset using the greyscale and binary invariant moments, DTC, x, y and 6x4 subdivision feature inputs... 82
Table 7-1: The average error, in pixels, of interpolated optical flow rates of the 5x5 cross-correlation grid when compared to the actual optical rates in the 9x9 grid, grouped by template size. .. 98
Table 7-2: The average error, in pixels, of interpolated optical flow rates of the 5x5 cross-correlation grid when compared to the actual optical flow rates in the 9x9 grid, grouped by dataset. ... 98
Table 8-1: The average distribution of salient regions found by Ezvision across all ten system evaluation datasets. .. 110
Table 8-2: The distribution of Weka classification across all ten system evaluation datasets. .. 110
Table 8-3: The false positive distributions of system evaluation datasets B, C, G and H... 111
Table 8-4: The grid clustering results for dataset A using a cross-correlation grid size of 5x5 and a cluster grid cell size of 15x15 .. 116
Table 8-5: The grid clustering results for dataset A using a cross-correlation grid size of 9x9 and a cluster grid cell size of 15x15 .. 117
Table 8-6: The grid clustering results for dataset A using a cross-correlation grid size of 5x5 and a cluster grid cell size of 20x20 .. 119
Table 8-7: The grid clustering results for dataset A using a cross-correlation grid size of 9x9 and a cluster grid cell size of 20x20 .. 120
Table 8-8: The grid clustering results for dataset A using a cross-correlation grid size of 5x5 and a cluster grid cell size of 25x25 .. 121
Table 8-9: The grid clustering results for dataset A using a cross-correlation grid size of 9x9 and a cluster grid cell size of 25x25 .. 121
Table 8-10: The total grid clustering results for the seven smallest system evaluation datasets using a cluster grid cell size of 15x15 .. 123
Table 8-11: The total grid clustering results for the seven smallest system evaluation datasets using a cluster grid cell size of 20x20 and a cross-correlation grid size of 5x5. ... 123

Table 8-12: The total grid clustering results for the seven smallest system evaluation datasets using a grid size of 20x20 and a cross-correlation grid size of 9x9.............. 124

Table 8-13: All ten system evaluation datasets classified using a cluster grid cell size of 15x15, minimum area threshold of 2 and cross-correlation template size of 80x80... 125

Table 8-14: All ten system evaluation datasets classified using a cluster grid cell size of 20x20, a minimum cluster size threshold of 2, a cross-correlation template size of 50x50 and a cross-correlation grid size of 5x5. .. 126