Emissions Predictive Modelling and Simulation for a Plug-in Hybrid Electric Scooter

By

Wai Kean Yap
B. Eng. (Hons.), University of Tasmania, 2005

A Thesis Submitted in Fulfillment of the Requirements for the Degree of Doctor of Philosophy

School of Engineering, University of Tasmania
June 2010

Supervisory Committee:
Professor Vishy Karri, Australian College of Kuwait
Dr. Tim Gale, University of Tasmania
DECLARATION AND AUTHORITY OF ACCESS

This thesis contains no material that has been accepted for a degree or diploma by the University of Tasmania or any other institution, except by way of background information that has been duly acknowledged in this thesis, and to the best of the author’s knowledge and belief no material has previously been published or written by another person except where due acknowledgement is made in text of this thesis, nor does the thesis contain any material that infringes copyright.

This thesis may be made available for loan. Copying of any part of this thesis is prohibited for two years from the date this statement was signed; after that time limited copying is permitted in accordance with the Copyright Act 1986.

Signed:_______________________________________

Date:___
ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my principal supervisor, Professor Vishy Karri for his profound knowledge, inspiration and expert guidance on, not just on my research, but life in general. I’d known Professor Karri since my undergraduate days. During his tenure at the University of Tasmania, he approached each of my problems, either personal or work-related, with patience and dedication.

I would also like to thank my secondary supervisor, Dr. Tim Gale, for his assistance in all administrative-related problems I’d encountered during the course of my research at the university. Thanks also to Mr. Steven Avery, Mr. Andrew Bylett, Ms. Jennifer O’Donohue, Professor Michael Negnevitsky and Professor Chris Letchford for their assistance.

I would also like to thank Mr. Rob Warren of Reds Motorcycles for his assistance in operating the chassis dynamometer and his extensive knowledge on motorcycles and the Bike Ambulance for transporting the scooter efficiently and punctually.

Special thanks to my parents and I dedicate this thesis to them for their constant support in every way possible. Constant encouragements and phone calls proved invaluable to me and I’m greatly indebted to you.
ABSTRACT

This thesis presents a comprehensive study on emissions predictive control modelling for hybrid electric scooters. Two approaches were investigated on a constructed hybrid electric scooter. The first approach involves developing a hybrid electric scooter dynamic model using MATLAB-Simulink and the second involves the development of an Emissions Predictive Model using artificial neural network.

The hybrid electric scooter model was developed to further understand and analyze as well as to predict its performance and emissions before proper construction of the prototype begins. The MATLAB-Simulink model consists of four integrated models that formed the complete hybrid scooter model: Battery Model, Engine Model, DC Motor Model and the Vehicle Dynamics Model. The multi-mode controller predicts the required parameters to operate the scooter in an optimize condition. Experimental data were gathered and thus compared to the simulated data to check the model’s feasibility and accuracy on four distinct driving cycles: Modified Urban Dynamometer Driving Schedule, New York City Cycle, European Driving Cycle and the Modified Highway Fuel Economy Driving Schedule. Results showed that the developed multi-state hybrid electric scooter model was accurate and feasible with predictive errors of ±10 % for emission levels and fuel economy on the European Driving Cycle. Simulated results were also compared to the existing literature and it was found that the qualitative trends were similar. By having a high-confidence simulation model, performance of the hybrid electric scooter were also simulated over the mentioned driving cycles demonstrating the optimization strategy of the multi-state control system.

For the second approach, the Emissions Predictive Model was then built using artificial neural network techniques to predict the following tailpipe emissions gases; CO, CO₂, HC and O₂. Three feed-forward neural network models were investigated and compared in this study; back-propagation, optimization layer-by-layer and radial basis function networks. Based on the experimental setup, the neural network models were trained and tested to accurately predict the effect of the engine operating conditions on the emissions by varying the number of hidden nodes. The selected optimization layer-by-layer network proved to be the most accurate and reliable predictive tool with prediction errors of ±5 %. The effect of the engine operating conditions on the tailpipe emissions for a scooter is shown to display similar qualitative and quantitative trends between the simulated and the experimental data.
Having accurate predictive models for emissions and fuel economy enable the hybrid electric scooter to be optimized via modelling and simulation before proper construction begins. The developed emissions predictive models could act as a virtual emissions sensor replacing costly hardware for the developed physical hybrid electric scooter. This study provides a better understanding in effects of engine process parameters on tailpipe emissions for the hybrid electric scooter as well as for general hybrid vehicular applications
FULL LIST OF PUBLICATIONS

TABLE OF CONTENTS

Declaration and Authority of Access ... ii
Acknowledgements ... iii
Abstract .. iv
Full List of Publications ... vi
Table of Contents .. vii
List of Figures .. xii
List of Tables ... xvii
Abbreviations .. xviii

CHAPTER 1: INTRODUCTION ... 1

1.1 Introduction ... 1
1.2 Motor Vehicle and Emissions Growth .. 1
1.3 Emission Impacts on Human Health ... 3
 1.3.1 Carbon Monoxide .. 4
 1.3.2 Nitrogen Oxide .. 4
 1.3.3 Ozone .. 4
 1.3.4 Hydrocarbon .. 4
 1.3.5 Particulate Matter ... 5
 1.3.6 Sulfur Dioxide .. 5
 1.3.7 Lead ... 5
1.4 Solutions Required .. 5
 1.4.1 Alternative Fuels .. 6
 1.4.2 Zero Emission Vehicle ... 6
 1.4.3 Hydrogen as a Fuel .. 7
 1.4.4 Hybrid Electric Vehicle ... 7
1.5 Problem Statement and Contributions ... 10
1.6 Research Focus and Tools ... 11
CHAPTER 2: LITERATURE SURVEY ... 14
2.1 Introduction ... 14
2.2 Hybrid Electric Vehicle Drivetrain Architecture 14
 2.2.1 Series Architecture .. 16
 2.2.2 Parallel Architecture ... 17
 2.2.3 Series-Parallel Architecture .. 18
2.3 Commercialized Multi-Mode Hybrid Vehicle Drivetrain Designs 20
 2.3.1 General Motors Design ... 21
 2.3.2 University of Michigan-Dearborn Design 28
 2.3.3 Renault Design ... 29
 2.3.4 Silvatech Design .. 31
 2.3.5 Timken Design ... 33
2.4 Hybrid Vehicle Modelling and Simulation ... 35
 2.4.1 Modelling and Simulation Tools .. 35
 2.4.2 Energy Control Management .. 36
 2.4.3 Emissions Predictive Techniques .. 37
2.5 Summary .. 38

CHAPTER 3: DEVELOPED ARTIFICIAL NEURAL NETWORK 40
3.1 Artificial Neural Network .. 40
 3.1.1 Artificial Neuron .. 41
3.2 Neural Network Structures .. 43
 3.2.1 Feed-forward Network ... 43
 3.2.2 Recurrent Network ... 43
3.3 Normalization of Dataset ... 44
3.4 Neural Network Learning .. 45
 3.5.1 Back-propagation Neural Network .. 45
 3.5.2 Kohonen Neural Network ... 48
 3.5.3 Radial Basis Function Neural Network .. 50
 3.5.4 Optimization Layer by Layer Neural Network 52
CHAPTER 4: HES MODELLING AND CONSTRUCTION

4.1 Introduction

4.2 Previous Research

4.3 HES Model Development

4.3.1 Vehicle Dynamics Model

4.3.2 Hub Motor Model

4.3.3 Battery Model

4.3.4 Internal Combustion Engine Model

4.3.4.1 Chassis Dynamometer Testing

4.3.4.2 ICE Model

4.3.5 Emissions Model

4.4 Multi-State Control System Model

4.5 Overall Integration of HES Model

4.6 HES Development

4.7 HES Model Architecture

4.8 HES Construction

4.8.1 Scooter Selection

4.8.2 DC Motor Selection

4.8.3 Battery and Charger Selection

4.8.4 Torque Restrainer

4.9 Controller Development

4.9.1 Microcontroller Selection

4.9.1.1 48 V Battery Current

4.9.1.2 48 V and 12 V Battery Line Voltages

4.9.1.3 Accelerator Position

4.9.1.4 Battery Temperature

4.9.1.5 Electric and Petrol Enable

4.9.1.6 Kill Switch
5.3 HES Model Appraisal .. 122
5.4 HES Model Simulation Results ... 127
 5.4.1 ECE-15 Cycle ... 127
 5.4.2 Modified UDDS Cycle ... 130
 5.4.3 NYCC Cycle ... 133
 5.4.4 Modified HWFET Cycle ... 135
 5.4.5 States Analysis ... 137
 5.4.6 Fuel Economy and Emissions Analysis ... 138
5.5 Conclusion .. 139

CHAPTER 6: ANN EMISSIONS PREDICTIVE MODEL ... 141
6.1 Introduction ... 141
6.2 Emissions Predictive Model ... 141
 6.2.1 Neural Network Analysis Package ... 142
 6.2.2 General Procedures of the Emissions Predictive Model .. 143
6.3 Results and Model Appraisal ... 145
 6.3.1 CO .. 145
 6.3.2 CO$_2$... 146
 6.3.3 HC .. 148
 6.3.4 O$_2$... 149
6.4 Conclusion ... 151

CHAPTER 7: FINAL CONCLUDING REMARKS AND RECOMMENDATIONS 153

List of References .. 156
Appendix A ... 168
Appendix B ... 181
Appendix C ... 208
LIST OF FIGURES

Figure 1.1: Base Case Projected Growth in Motor Vehicle Travel ..2
Figure 1.2: Justus B. Entz’s Chalkboard Design ..8
Figure 1.3: The Pieper Design ...8
Figure 1.4: The Vendovelli and Priestly Electric Carriage Company Design9
Figure 2.1: General Representation of a HEV Drivetrain ...15
Figure 2.2: Load Power ..15
Figure 2.3: (a) Series Hybrid Structure (b) Parallel Hybrid Structure (c) Series-Parallel Hybrid Structure ..19
Figure 2.4: General Motors Hybrid Drivetrain Design A ..22
Figure 2.5: General Motors Hybrid Drivetrain Design B ..25
Figure 2.6: General Motors Two-Mode EVT Architecture ..26
Figure 2.7: GM’s Two-Mode Compound-Split Hybrid Design ..27
Figure 2.8: University of Michigan-Dearborn Hybrid Drivetrain Design29
Figure 2.9: Renault Drivetrain Design ..30
Figure 2.10: Silvatech Drivetrain Design ..31
Figure 2.11: Timken Drivetrain Design ..33
Figure 3.1: Biological Neural System ..40
Figure 3.2: Artificial Neuron Structure ..41
Figure 3.3: Activation Functions ..42
Figure 3.4: Feed-forward Neural Network ...43
Figure 3.5: Recurrent Neural Network ...44
Figure 3.6: Back-propagation Neural Network Model with 1 Hidden Layer46
Figure 3.7: Basic Kohonen Neural Network Model ...49
Figure 3.8: Basic Radial Basis Function Neural Network Model ...50
Figure 3.9: Gaussian Activation Function ...51
Figure 3.10: Optimization Layer by Layer Neural Network Model53
Figure 3.11: Linearized Network Structure for the Optimization of the Hidden Layer56
Figure 4.1: Scooter Free Body Diagram ... 61
Figure 4.2: I/O Flow Diagram for Vehicle Dynamics Model .. 64
Figure 4.3: MATLAB-Simulink Vehicle Dynamics Block Model – Level 1 64
Figure 4.4: MATLAB-Simulink Vehicle Dynamics Block Model – Level 2 65
Figure 4.5: Island Earth GL2 Hub Motor Characteristics .. 66
Figure 4.6: I/O Flow Diagram for Hub Motor Model .. 67
Figure 4.7: MATLAB-Simulink Hub Motor Block Model – Level 1 68
Figure 4.8: MATLAB-Simulink Battery Model – Level 1 ... 70
Figure 4.9: 83 cc Bug Escape Scooter .. 71
Figure 4.10: Scooter on the Chassis Dynamometer ... 72
Figure 4.11: Gas Analyzer Setup ... 73
Figure 4.12: Modified ECE-15 Cycle .. 74
Figure 4.13: ICE Maps for Each Throttle Openings ... 75
Figure 4.14: I/O Flow Diagram for ICE Model 1 ... 76
Figure 4.15: ICE BSFC Map ... 77
Figure 4.16: I/O Flow Diagram for ICE Model 2 ... 78
Figure 4.17: MATLAB-Simulink ICE Model – Level 1 ... 79
Figure 4.18: Emissions Data for Each Throttle .. 80
Figure 4.19: I/O Flow Diagram for Emissions Model .. 81
Figure 4.20: Speed Threshold Values for Each Propulsion Source 82
Figure 4.21: SC Threshold Values during Vehicle Operation 83
Figure 4.22: MATLAB-Simulink Controller Model – Level 1 85
Figure 4.23: Control Block Diagram ... 86
Figure 4.24: Control Operation Parameters .. 87
Figure 4.25: Overall HES Model Flow Diagram ... 89
Figure 4.26: MATLAB-Simulink HES Predictive Model ... 90
Figure 4.27: HES Architecture and Power Flow ... 92
Figure 4.28: Reduced Tire Surface Width from 120 mm to 57 mm 93
Figure 4.29: Attached Hub Motor .. 94
Figure 4.30: Underneath the Seat Compartment

Figure 4.31: Torque Restrainers

Figure 4.32: HES Control Signal Flow Diagram

Figure 4.33: PCB Board under the HES’s Seat

Figure 4.34: Microchip ICD 2 Programmer

Figure 4.35: Current Sensor Power Supply

Figure 4.36: Current Sensor Signal Conditioning

Figure 4.37: Battery Voltage Sensor Circuit

Figure 4.38: Throttle Sensor Circuit

Figure 4.39: Temperature Sensor

Figure 4.40: Electric, Petrol and Hybrid Modes Switches

Figure 4.41: Dashboard Display

Figure 4.42: Manual Electric, ICE and Hybrid Mode Circuit

Figure 4.43: Kill Switch Circuit

Figure 4.44: Petrol Kill Circuit

Figure 4.45: Brake On and Ignition On Circuit

Figure 4.46: 240 V Mains Detection Circuit

Figure 4.47: Switching Circuit

Figure 4.48: Wheel Speed Sensor

Figure 4.49: ICE Tachometer Circuit

Figure 4.50: Controller Output to Relay

Figure 4.51: Switching Circuit

Figure 4.52: Electric Controller Circuit

Figure 4.53: RS232 Serial Port

Figure 4.54: Charge Plug Installed

Figure 4.55: Parallel Plug-in Hybrid Electric Scooter

Figure 5.1: ECE-15 Driving Cycle

Figure 5.2: Modified UDDS Driving Cycle

Figure 5.3: NYCC Driving Cycle
Figure 5.4: Modified HWFET Driving Cycle ... 122
Figure 5.5: Fuel Economy for the Modified ECE-15 Cycle ... 123
Figure 5.6: BSFC for the Modified ECE-15 Cycle .. 123
Figure 5.7: CO Predictions for the Modified ECE-15 Cycle .. 124
Figure 5.8: CO₂ Predictions for the Modified ECE-15 Cycle ... 124
Figure 5.9: HC Predictions for the Modified ECE-15 Cycle ... 125
Figure 5.10: O₂ Predictions for the Modified ECE-15 Cycle ... 125
Figure 5.11: Demanded Torque and Power for the ECE-15 Cycle 127
Figure 5.12: ICE and Motor Torque Provided for the ECE-15 128
Figure 5.13: Fuel Economy and SC for the ECE-15 ... 129
Figure 5.14: States Transition for the ECE-15 Cycle .. 129
Figure 5.15: Accumulative Emissions for the ECE-15 Cycle ... 130
Figure 5.16: Demanded Torque and Power for the Modified UDDS Cycle 131
Figure 5.17: ICE and Motor Torque Provided for the Modified UDDS Cycle 131
Figure 5.18: Fuel Economy and SC for the Modified UDDS Cycle 132
Figure 5.19: States Transition for the Modified UDDS Cycle 132
Figure 5.20: Accumulative Emissions for the Modified UDDS Cycle 132
Figure 5.21: Demanded Torque and Power for the NYCC Cycle 133
Figure 5.22: ICE and Motor Torque Provided for the NYCC Cycle 133
Figure 5.23: Fuel Economy and SC for the NYCC Cycle ... 134
Figure 5.24: States Transition for the NYCC Cycle ... 134
Figure 5.25: Accumulative Emissions for the NYCC Cycle ... 135
Figure 5.26: Demanded Torque and Power for the Modified HWFET Cycle 136
Figure 5.27: ICE and Motor Torque Provided for the Modified HWFET Cycle 136
Figure 5.28: Fuel Economy and SC for the Modified HWFET Cycle 136
Figure 5.29: States Transition for the Modified HWFET Cycle 136
Figure 5.30: Accumulative Emissions for the Modified HWFET 137
Figure 6.1: EPM Structure ... 141
Figure 6.2: Neural Network Model List .. 142
Figure 6.3: Neural Network EPM Structure ... 143
Figure 6.4: CO Training Error ... 145
Figure 6.5: CO Testing Error .. 146
Figure 6.6: CO Prediction Results ... 146
Figure 6.7: CO\textsubscript{2} Training Error ... 147
Figure 6.8: CO\textsubscript{2} Testing Error ... 147
Figure 6.9: CO\textsubscript{2} Prediction Results ... 148
Figure 6.10: HC Training Error .. 148
Figure 6.11: HC Testing Error .. 149
Figure 6.12: HC Prediction Results .. 149
Figure 6.13: O\textsubscript{2} Training Error .. 150
Figure 6.14: O\textsubscript{2} Testing Error .. 150
Figure 6.15: O\textsubscript{2} Prediction Results ... 151
LIST OF TABLES

Table 1.1: Projected Emissions ...3
Table 2.1: Operating Modes and Conditions for GM Design A ..23
Table 2.2: Operating Modes and Conditions for GM Design B ..25
Table 2.3: Operating Modes and Conditions for GM Two-Mode EVT Design ...27
Table 2.4: Operating Modes and Conditions for GM’s Two-Mode Compound-Split Hybrid Design28
Table 2.5: Operation Modes and Conditions for University of Michigan-Dearborn Design29
Table 2.6: Renault Design Modes ..30
Table 2.7: Silvatech Design Modes ..32
Table 2.8: Timken Design Modes ...34
Table 4.1: Rolling Resistance Coefficient ..62
Table 4.2: 83 cc Bug Escape Scooter Data ..71
Table 4.3: Overall HES Model Flow Diagram Description ..88
Table 4.4: Island Earth GL2 Hub Motor Summary ...94
Table 4.5: Summary of PIC18F4520 Features ..98
Table 4.6: Summary of I/O Requirements ..99
Table 4.7: Switch Configuration ..105
Table 5.1: Results and Errors for Fuel Usage Simulation for ECE-15 Cycle ...126
Table 5.2: Results and Errors for Emissions and Fuel Economy Simulation ..126
Table 5.3: Summary of State Usages ..138
Table 5.4: Summary of the Simulated Fuel Economy ..139
Table 5.5: Summary of the Simulated Total Emissions ...139
Table 6.1: Summary of Results ..151
ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>AI</td>
<td>artificial intelligence</td>
</tr>
<tr>
<td>ANN</td>
<td>artificial neural network</td>
</tr>
<tr>
<td>BP1</td>
<td>back-propagation with 1 hidden layer</td>
</tr>
<tr>
<td>BP2</td>
<td>back-propagation with 2 hidden layers</td>
</tr>
<tr>
<td>BSFC</td>
<td>brake specific fuel consumption</td>
</tr>
<tr>
<td>CAFE</td>
<td>Corporate Average Fuel Economy</td>
</tr>
<tr>
<td>CL</td>
<td>clutch</td>
</tr>
<tr>
<td>CO</td>
<td>carbon monoxide</td>
</tr>
<tr>
<td>CO₂</td>
<td>carbon dioxide</td>
</tr>
<tr>
<td>DFV</td>
<td>dual-fuel vehicles</td>
</tr>
<tr>
<td>ECE-15</td>
<td>Standard European Cycle</td>
</tr>
<tr>
<td>EPM</td>
<td>Emissions Prediction Model</td>
</tr>
<tr>
<td>EC</td>
<td>energy source</td>
</tr>
<tr>
<td>ES</td>
<td>energy converter</td>
</tr>
<tr>
<td>EV</td>
<td>electric vehicle</td>
</tr>
<tr>
<td>FCV</td>
<td>fuel cell vehicles</td>
</tr>
<tr>
<td>HC</td>
<td>hydrocarbon</td>
</tr>
<tr>
<td>HEM</td>
<td>hybrid electric motorcycle</td>
</tr>
<tr>
<td>HES</td>
<td>hybrid electric scooter</td>
</tr>
<tr>
<td>HEV</td>
<td>hybrid electric vehicle</td>
</tr>
<tr>
<td>HWFET</td>
<td>Highway Fuel Economy Driving Schedule</td>
</tr>
<tr>
<td>I/O</td>
<td>input/output</td>
</tr>
<tr>
<td>ICE</td>
<td>internal combustion engine</td>
</tr>
<tr>
<td>LVQ</td>
<td>learning vector quantization</td>
</tr>
<tr>
<td>M/G</td>
<td>motor/generator unit</td>
</tr>
<tr>
<td>NO₃⁻</td>
<td>nitrate</td>
</tr>
<tr>
<td>NOₓ</td>
<td>nitrogen oxides</td>
</tr>
<tr>
<td>NYCC</td>
<td>New York City Cycle</td>
</tr>
<tr>
<td>O₂</td>
<td>oxygen</td>
</tr>
<tr>
<td>O₃</td>
<td>ozone</td>
</tr>
<tr>
<td>OLL</td>
<td>Optimization Layer by Layer</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Pb</td>
<td>lead</td>
</tr>
<tr>
<td>PGT</td>
<td>planetary gear train</td>
</tr>
<tr>
<td>PM</td>
<td>particulate matter</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>RBF</td>
<td>Radial Basis Function</td>
</tr>
<tr>
<td>RBF+KOH</td>
<td>Radial Basis Function incorporating the Kohonen Network</td>
</tr>
<tr>
<td>RMS</td>
<td>root mean square</td>
</tr>
<tr>
<td>rpm</td>
<td>revolutions per minute</td>
</tr>
<tr>
<td>SC</td>
<td>state of charge</td>
</tr>
<tr>
<td>SLA</td>
<td>sealed lead acid</td>
</tr>
<tr>
<td>SO₂</td>
<td>sulphur dioxides</td>
</tr>
<tr>
<td>SO₄⁻</td>
<td>sulphate</td>
</tr>
<tr>
<td>tce</td>
<td>trichloroethylene</td>
</tr>
<tr>
<td>TPS</td>
<td>throttle position sensor</td>
</tr>
<tr>
<td>UDDS</td>
<td>Urban Dynamometer Driving Schedule</td>
</tr>
<tr>
<td>US EPA</td>
<td>Environment Protection Agency</td>
</tr>
<tr>
<td>WOT</td>
<td>wide open throttle</td>
</tr>
<tr>
<td>ZEV</td>
<td>zero emissions vehicle</td>
</tr>
</tbody>
</table>