DNA-based Methods for Studying the Diet of Marine Predators

Bruce E. Deagle
BSc, University of Western Ontario
MSc, University of Victoria

Submitted in fulfilment of the requirements for the degree of
Doctor of Philosophy.
University of Tasmania (March, 2006)
Declaration of originality

I hereby declare that this thesis contains no material which has been accepted for the award of any other degree or diploma in any tertiary institute, and that, to the best of my knowledge and belief, the thesis contains no material previously published or written by another person, except where due reference is made in the text of the thesis.

Bruce E. Deagle March 30th, 2006

Statement of authority of access

This thesis may be made available for loan and limited copying in accordance with the Copyright Act 1968.

Bruce E. Deagle March 30th, 2006
Thesis Abstract

Diets of large marine predators have been extensively studied to assess interactions with fisheries, monitor links between diet and reproductive success, and understand trophic interactions in marine ecosystems. Since marine species can rarely be observed foraging directly, most studies rely on the identification of prey remains in stomach contents or faeces to determine the prey items being consumed. While this approach has provided a wealth of information, it has several limitations resulting primarily from difficulties identifying digested prey and from biased recovery of remains due to differential digestion. My thesis explores the use of molecular genetic methods in dietary studies of large marine predators. DNA-based identification techniques have been used in several diet studies, but the methods and applications are still in the early stages of development. Through a number of studies, I investigated the ability to recover genetic data from various dietary samples using a range of genetic techniques.

A) Genetic screening for prey in the gut contents from a giant squid – I assessed the use of polymerase chain reaction (PCR)-based methods for isolation of prey DNA from an Architeuthis gut content sample. A taxonomically informative molecular marker was selected and a screening method developed using denaturing gradient gel electrophoresis. The methodology was used to identify prey from otherwise unidentifiable hard-part remains and the amorphous slurry component of the squid gut sample. The techniques developed here provided a framework for later chapters.

B) Analysis of prey DNA in faeces of captive sea lions

Part I: DNA detection, distribution and signal persistence – A feeding trial with captive Steller sea lions (Eumetopias jubatus) was carried out to investigate the use of genetic faecal analysis as a tool to study diet. I used group-specific PCR detection to determine: (i) the reliability of prey DNA recovery, (ii) the distribution of prey DNA within faeces and (iii) the persistence of the genetic signal after a prey item was removed from the diet. The proportions of prey DNA in several samples were also determined using a clone library approach to determine if DNA quantification could provide semi-quantitative diet composition data. Results show that the prey DNA could be reliably detected in sea lion faeces and the genetic signal could persist in samples up to 48 hours after ingestion. Proportions of prey DNA isolated from faeces were roughly proportional to the mass of the prey items consumed.

Part II: DNA quantification – Quantitative real-time PCR was used to further investigate if quantitative diet composition data could be obtained through quantification of the DNA present in faeces. I quantified the relative amounts of DNA in three fish species being fed to captive sea lions, then determined the amount of DNA recovered from these prey items in the sea lions’ faeces. The results indicate that diet composition estimates based on the relative amounts of DNA in faeces can be biased due to the differential survival of DNA from different fish species; however, these biases may be less than those commonly observed in the conventional analysis of prey hard remains.
C) *Quantification of damage in DNA recovered from faecal samples* – I developed a general method to quantify the frequency of DNA damage present in specific gene regions. The technique was applied to assess the amount of DNA damage in predator and prey DNA recovered from sea lion faeces. The estimated frequency of DNA damage was always higher for the prey DNA than for the predator DNA within a faecal sample. The findings have implications for marker development and comparison of results obtained in future DNA-based diet studies.

D) *Studying seabird diet through genetic analysis of faeces* – I investigated the diet of macaroni penguins (*Eudyptes chrysolophus*) through conventional analysis of stomach contents and through the analysis of prey DNA extracted from faeces. Genetic data was obtained from faecal samples using PCR tests to determine the presence or absence of DNA from potential diet items and also using a clone library approach. Approximately half of the faecal samples tested positive for one or more of the prey groups targeted with PCR tests. Euphausiid DNA was most commonly detected in early stages of chick rearing and DNA from a myctophid fish was prevalent in faeces collected later; this trend mirrored the data obtained from the stomach contents. Analysis of prey sequences in “universal” clone libraries revealed a highly biased recovery of sequences from fish prey; this bias is most likely caused by the use of degenerate primers with a higher binding affinity for fish DNA template compared to DNA from other prey groups. Results obtained from the genetic and traditional approaches are compared, and potential future applications of the genetic techniques to studying seabird diet are discussed.

This series of studies has contributed significantly to our understanding of the strengths and the limitations of DNA-based diet analysis. The work identifies situations where genetic methods can be successfully applied to study the diet of marine predators and provides guidance for future studies in this emerging field.
The work in this thesis stemmed from research initiated by two of my supervisors, Nick Gales and Simon Jarman from the Australian Antarctic Division (AAD). Their enthusiasm, valuable advice and unfettered support made my project possible. Mark Hindell, my university supervisor, welcomed me into his group and provided a home for me at the Antarctic Wildlife Research Unit (AWRU). An excellent cohort of Research Fellows, PhD students and Honours students were at the AWRU during my tenure, making this a good place to be – thanks to you all.

The Steller sea lion feeding trial carried out at the Vancouver Aquarium could not have been done without the support from Andrew Trites and Dominic Tollit. Andrew agreed to the make room for my project in the busy research schedule at the aquarium. Dom generously lent his time, experience and enthusiasm in order to make sure the feeding trial happened, and that I got all the samples that I required. My time at the aquarium was also made enjoyable and productive due to help from members of the UBC Marine Mammal Research Unit (particularly Susan Heaslip, Rebecca Barrick, Chad Nordstrom and David Rosen) and the marine mammal trainers (Troy Neale, Nigel Waller and Billy Lasby). A special thanks to the sea lions (Hazy and Nuka) for their vital contributions.

The macaroni penguin diet study was part of a large research expedition to Heard Island undertaken by the AAD in the summer of 2003–04. Karen Evans and Rowan Trebilco carried out the field work with me at Capsize Beach. Karen’s meticulous planning and stomach flushing expertise were very much appreciated, as were Rowan’s bad jokes and enthusiasm. Thanks to all the expeditioners for their time and friendship during the trip, and of course thanks to the penguins for putting up with us. Back in Hobart, Sarah Robinson helped with the tedious sorting of the macaroni penguin stomach samples and identified the otoliths that we recovered. John Kitchener helped me with identification of amphipods and euphausiids.

Most of the laboratory work was carried out in the Molecular Genetics Laboratory at the University of Tasmania – Adam Smolenski deserves credit for keeping everything running smoothly in this busy facility. The laboratory costs of the project were covered by the AAD, without this funding the project simply would not have happened. Abe Passmore was a good mate to share so many hours in the lab with. Conversations with Abe over coffee provided many welcome breaks and valuable insight into the project.

The writing of this thesis has benefited from input from a large number of people. Regular discussions with Simon Jarman and his “goblin army” provided me with a constant source of ideas (special thanks to Abe, Ruth, Glenn, Kevin and Megan). All of my supervisors and various co-authors helped by editing and commenting on each of the chapters. Abe Passmore and Glenn Dunshea also provided useful comments on some of the chapters. Anonymous reviewers made useful contributions to the published work (Chapters 2, 3 and 4) and comments from my thesis reviewers (Bill Symondson and Scott Baker) were also very constructive.

My fondest thanks go to Paige who provided an endless supply of encouragement, support and love. If that wasn’t enough, she also endured almost daily reports of my successes and failures, provided helpful advice and therapeutic discussion, carefully edited drafts of each chapter and provided much needed statistical guidance. My family also provided strong support over the project – even from the other end of the globe.
Table of Contents

THESIS ABSTRACT ... V

 ACKNOWLEDGEMENTS ... VII

 LIST OF FIGURES ... XI

 LIST OF TABLES .. XIII

CHAPTER 1 .. 1

 1.1 INTRODUCTION ... 3
 1.2 CONVENTIONAL DIETARY ANALYSIS METHODS .. 4
 1.2.1 Stomach content analysis ... 4
 1.2.2 Faecal analysis .. 5
 1.2.3 Tissue biomarker methods ... 7
 1.3 APPLICATION OF DNA-BASED TECHNIQUES TO DIET ANALYSIS 8
 1.3.1 DNA-based stomach content analysis .. 10
 1.3.2 DNA-based faecal analysis .. 14
 1.4 RELEVANT RESEARCH IN ALLIED FIELDS ... 16
 1.5 THESIS OUTLINE ... 18
 1.6 DETAILS OF PUBLICATIONS RESULTING FROM THESIS .. 20

CHAPTER 2 .. 23

 2.1 INTRODUCTION ... 25
 2.2 METHODS ... 27
 2.2.1 Architeuthis Sample .. 27
 2.2.2 DNA extraction .. 27
 2.2.3 Primer design ... 28
 2.2.4 PCR amplification and cloning .. 31
 2.2.5 Sequence analysis ... 31
 2.2.6 DGGE analysis .. 31
 2.3 RESULTS .. 33
 2.3.1 Conserved 16S primers ... 33
 2.3.2 Chordate primers ... 35
 2.3.3 DGGE analysis .. 35
 2.4 DISCUSSION ... 38

CHAPTER 3 .. 41

 3.1 INTRODUCTION ... 43
 3.2 MATERIALS AND METHODS ... 45
 3.2.1 Feeding trial and sample collection ... 45
 3.2.2 DNA extraction, PCR and sequencing ... 49
 3.2.3 DGGE analysis .. 52
 3.2.4 Quantitative Estimates ... 52
 3.2.5 Data analysis .. 53
 3.3 RESULTS .. 54
 3.3.1 DGGE separation of PCR products ... 54
 3.3.2 Detection of prey DNA in feeding trial scat samples .. 55
 3.3.3 Control samples ... 56
 3.3.4 Time course samples ... 58
 3.3.5 Unknown samples .. 58
 3.3.6 Quantitative estimates ... 59
 3.4 DISCUSSION ... 62
CHAPTER 4

4.1 INTRODUCTION ... 71
4.2 MATERIALS AND METHODS ... 72
 4.2.1 Faecal and tissue samples ... 72
 4.2.2 Quantitative PCR ... 73
4.3 RESULTS AND DISCUSSION ... 77

CHAPTER 5

5.1 INTRODUCTION ... 87
5.2 MATERIALS AND METHODS ... 89
 5.2.1 DNA Samples ... 90
 5.2.2 Primer design ... 90
 5.2.3 Quantification of mtDNA ... 91
 5.2.4 Analysis of length-inhibition ... 92
 5.2.5 Model for quantitative estimates of DNA damage 93
5.3 RESULTS .. 95
 5.3.1 Primer testing and DNA quantification 95
 5.3.2 Length-specific inhibition .. 97
 5.3.3 Model results ... 98
5.4 DISCUSSION ... 100

CHAPTER 6

6.1 INTRODUCTION ... 109
6.2 MATERIAL AND METHODS .. 111
 6.2.1 Study site, sample collection and DNA extraction 111
 6.2.2 Stomach content analysis .. 112
 6.2.3 Genetic presence/absence detection in faecal samples 113
 6.2.4 Genetic clone library analysis of faecal samples 115
 6.2.5 Data analysis ... 116
6.3 RESULTS .. 117
 6.3.1 Stomach content analysis .. 117
 6.3.2 Genetic presence/absence detection in faecal samples 119
 6.3.3 Genetic clone library analysis of faecal samples 122
6.4 DISCUSSION ... 124

CHAPTER 7

7.1 OVERVIEW OF CHAPTER .. 131
7.2 RECENT DNA-BASED DIET STUDIES 133
7.3 GENERAL DISCUSSION AND FUTURE DIRECTIONS 137
 7.3.1 Questions for future studies ... 139
 7.3.2 Technical considerations ... 140
 7.3.3 Future of DNA-based quantitative diet estimates 144
 7.3.4 Concluding remarks ... 145

REFERENCES ... 147

APPENDIX I: .. 163
APPENDIX II: ... 169
APPENDIX III: ... 171
APPENDIX IV: ... 173
List of Figures

Figure 2.1 Size of the PCR product which would be amplified from a taxonomically diverse group of fish (Osteichthyes and Chondrichthyes) and cephalopods using 16S mtDNA primers (16S1F and 16S2R). 29

Figure 2.2 Theoretical melt maps for 16S mtDNA fragments amplified from blue grenadier (291 bp) and Architeuthis (229 bp) template using 16S mtDNA primers (16S1F and 16S2R with a 3' GC clamp). ... 32

Figure 2.3 Neighbor-joining tree based on the 252 bp mtDNA sequence obtained from the Architeuthis gut sample aligned with gadiformes species and additional sequences obtained from fish species during the present study. .. 34

Figure 2.4. Denaturing gradient gel electrophoresis separation of mtDNA 16S PCR products amplified from genomic DNA of arrow squid (nototodarus sp.) and blue grenadier (macruronus novaezelandiae) and DNA extracted from the the architeuthis gut contents. .. 36

Figure 3.1 Distribution of Steller sea lions and the delineation of the two distinct stocks. ... 45

Figure 3.2 Overview of feeding regimes and scat samples collected during the feeding trial. .. 47

Figure 3.3 Schematic of feeding trial experiment showing timing of scat collection and pulse feeding events ... 48

Figure 3.4 Overview of genetic analysis performed on the samples collected during the feeding trial .. 51

Figure 3.5 Denaturing gradient gel electrophoresis of 16S mtDNA fragments amplified from fish prey species fed during the feeding trial. .. 54

Figure 3.6 Dot plot showing estimates of the proportions of fish species in diet obtained through analysis of DNA in clone libraries. These samples were collected when the two daily meals were identical in composition. .. 60

Figure 3.7 Dot plot showing estimates of the proportions of fish species in diet obtained through analysis of DNA in clone libraries. These samples were collected when the two daily meals differed in composition. .. 61

Figure 4.1 Schematic of the plasmid used as a standard in qPCR. The plasmid insert contains mtDNA 16S gene fragments from three fish species ligated into the polylinker region of PCR®2.1 TOPO® (Invitrogen). .. 74
Figure 4.2 Fluorescence measurements obtained during SYBR® Green real-time PCR amplification of DNA from three fish species in eight representative faecal samples. 76

Figure 4.3 Example of a quantitative real-time PCR standard curve generated through amplification of the three fish plasmid. ... 77

Figure 4.4 Box plots showing a summary of the percentage DNA composition data based on quantitative real-time PCR estimates. Plots include results from tissue mixture and from faecal samples. ... 78

Figure 4.5 Plot of actual diet versus estimated diet using various biomass reconstruction methods. .. 83

Figure 5.1 Overview of the approach for quantification of DNA damage. 89

Figure 5.2 The proportion of amplifiable fragments versus amplicon size after a random degradation process shown for various probabilities of a nucleotide being damaged (λ). ... 94

Figure 5.3 Quantitative estimates of the amount of amplifiable herring DNA in three spiked faecal DNA extractions measured with assays targeting PCR products of five different sizes (69 bp, 123 bp, 184 bp, 226 bp and 304 bp). ... 97

Figure 5.4 Quantitative PCR results obtained for herring DNA and sea lion DNA extracted from ten sea lion faecal samples. The number of amplifiable copies is plotted against amplicon size for each target species in each sample. 99

Figure 5.5 Plots of the estimated proportion of amplifiable fragments versus amplicon size for various faecal DNA extracts .. 102

Figure 6.1 Location of Capsize Beach penguin colony on Heard Island. 112

Figure 6.2 Summary of the prey detection data from macaroni penguin faecal samples. Results are shown for five prey groups targeted with specific PCR tests. 121

Figure 6.3 Bar plot showing proportional composition of two euphausiid genera in macaroni penguin diet samples. Data from: (a) sequences obtained from cloned PCR products; (b) numbers present in stomach samples. ... 124

Figure 7.1 The number of dietary studies using DNA-based identification methods published each year since the first study in 1992. ... 137

Figure A1.1 PCR amplification products obtained by 10-fold serial dilution of template using nested and standard PCR. ... 165

Figure A4.1 Sample numbers for penguin faecal samples containing prey DNA. 173
List of Tables

Table 1.1 Dietary studies of invertebrate predators investigating the use of DNA-based methods for prey detection in gut contents. ... 12

Table 1.2 Dietary studies of vertebrate predators investigating the use of DNA-based methods for prey detection in stomach contents or faeces. 13

Table 2.1 Primers used in the current chapter (16S1F and 16S2R) aligned with homologous sequences from representative target taxa ... 30

Table 2.2 Variable sites identified in nucleotide sequences obtained from amorphous slurry component of the Architeuthis gut contents ... 37

Table 3.1 PCR primers used in the sea lion feeding trial (Chapter 3). 50

Table 3.2 Frequency of detection of prey DNA in scat samples collected during the basic diet feeding regime of the captive feeding trial. .. 56

Table 3.3 Frequency of detection of prey DNA in scats collected from a sea lion while being fed the same basic diet in either: (1) two daily meals of equal size and species composition, (2) two daily meals of unequal size and species composition. 57

Table 3.4 Summary of the PCR detection results in days following inclusion of pulse species (pollock or capelin) in the diet for a single day. ... 57

Table 3.5 Results of blind PCR tests for prey DNA preformed on ten sea lion scat sub-samples ... 59

Table 3.6 Percentage detection of predator mtDNA from studies carrying out PCR analysis of DNA from mammalian scat. .. 64

Table 4.1 Estimated copy numbers of fish prey DNA template in sea lion faeces........ 79

Table 4.2 Percent composition of fish DNA in sea lion faecal samples...................... 80

Table 4.3 Summary of percent composition data with faecal composition estimates corrected to account for differences in DNA density ... 81

Table 5.1 Sequences of primers used to quantify DNA degradation 91

Table 5.2 Estimated copy numbers of template in PCR amplifications used to quantify DNA degradation and results from the model fits ... 96

Table 6.1 PCR primers used to detect DNA from five groups of potential prey in macaroni penguin faecal samples ... 114

Table 6.2 Composition of macaroni penguins stomach samples (based on wet mass of prey components in samples). ... 118
Table 6.3 Comparison of percent frequency of occurrence data of macaroni penguin prey identified through conventional stomach content analysis and genetic analysis of faeces ... 119

Table 6.4 Comparison of the diversity of prey identified by conventional stomach content and faecal DNA analysis ... 120

Table 6.5 Summary of the taxonomic classification of sequence data obtained through the analysis of clone libraries produced from macaroni penguin faecal DNA. 123

Table 7.1 Recent dietary studies of invertebrate predators investigating the use of DNA-based methods for prey detection in gut contents ... 135

Table 7.2 Recent dietary studies of vertebrate predators investigating the use of DNA-based methods for prey detection in stomach contents or faeces 136

Table A1.1 Sequences of primers used for nested PCR amplification 164

Table A1.2 Performance of nested and standard PCR under various conditions 166

Table A2.1 Details of all PCR primer pairs used in the thesis 169

Table A2.2 Details of the degenerate primers used to create clone libraries from penguin faecal samples ... 170

Table A3.1 Estimated copy numbers of sea lion and herring DNA in sea lion faeces for various sizes of PCR target ... 171

Table A4.1 Results from the penguin faecal DNA clone library analysis 173