Open Access Repository

Spatial management of reef fisheries and ecosystems: understanding the importance of movement


Downloads per month over past year

Barrett, NS, Buxton, CD, Semmens, JM, Lyle, JM, Forbes, E and Phelan, M 2010 , Spatial management of reef fisheries and ecosystems: understanding the importance of movement.

[img] PDF
FRDC_Spatial_Ma...pdf | Request a copy
Registered users only
Available under University of Tasmania Standard License.


In the Northern Territory, the primary outcome was an improved understanding of the
temporal and spatial dynamics of Protonibea diacanthus aggregations. Most
importantly, the study demonstrated that the aggregations are likely to be separate adult
populations. This has significant implications for stock assessment and management of
the resource as such populations are likely to be highly vulnerable to localised
In Tasmania, the primary outcome was an improved understanding of the temporal and
spatial movement patterns of Cheilodactylus spectabilis and Latridopsis forsteri. C
spectabilis only moved to depth during the spawning season, suggesting that the deep
water stocks that fishers believe act as a refuge population are in fact temporary
residents during the spawning season, and the fishery may in fact target a major
component of the stock. The result of C. spectabilis being highly site attached and
occupying very small core areas of reef suggests that fishing has the potential to cause
localised and serial depletion of this species. Despite being a mobile species, some L.
forsteri individuals were site attached, suggesting that closed areas may be of some
benefit for the sustainable management of this species.
Movement information is essential to understanding many aspects of exploited
populations such as replenishment of fished reefs (from local, adjacent or deep reefs),
aggregation behaviour, critical habitat requirements and cyclic variation in catch rates.It is particularly important to the understanding and application of spatial fisheries
management techniques, including MPAs.
This project focused on species of commercial interest in both Tasmania and the
Northern Territory in order to evaluate the effectiveness of spatial management for
fishes with a range of life histories.
The Northern Territory component focused on the black jewfish Protonibea diacanthus,
a large tropical sciaenid that forms a substantial component of both commercial and
recreational inshore fisheries in the region. Fishers target spatially and temporally
predictable aggregations, and catches have increased substantially over the past decade.
Repeated fishing of aggregations is not considered to be sustainable, particularly given
the decline of P. diacanthus at other localities in Australia and the Asian-Pacific region.
Acoustically tagged fish were monitored at two of the three known major aggregation
sites, Channel Point and Chambers Bay, to determine whether the aggregations were
separate populations and whether management measures such as spatial and temporal
closures might be effective.
No evidence of movements between aggregations within the time frame of the study (~
1 year) was observed although there was evidence for different behavioural types in the
aggregations, with ‘movers’, which were highly mobile and ‘stayers’, which were site
attached to varying degrees. Fish monitored for ≥ 1 year showed a decreased presence
during cooler months, and an increased presence during warmer months, when peak
spawning occurs. The tidal cycle significantly influenced the detection of tagged fish,
with detections peaking on running tides. This coincided with the peak period for
catching P. diacanthus, evidence that suggests this is when they are most active.The existence of separate adult populations at each aggregation site has significant
implications for assessment and management of the P. diacanthus resource in the NT,
with the potential for each population to be highly vulnerable to localised depletion.
Area closures during the peak summer spawning period may be a practical way to
manage the resource, and would protect fish moving in and out of the aggregation sites
to spawn. However, given P. diacanthus appears to form resident spawning
aggregations, with fish present and caught at the sites year round, the fish would remain
highly vulnerable during other periods of the year, potentially negating, or at least
reducing the benefits of seasonal closures. As such, other management measures may
need to be looked at in combination with seasonal closures, such as reducing catches in
the different sectors of the fishery.
The Tasmanian component focused on two key large temperate reef species found in
inshore south-eastern Australian and New Zealand waters, banded morwong
Cheilodactylus spectabilis and bastard trumpeter, Latridopsis forsteri. Banded morwong
are commercially gill netted in Tasmania and Victoria, and sold live for the Asian
restaurant market. In Tasmania the biomass has been significantly fished down and as a
result the population is mostly younger fish that are growing faster and maturing earlier.
The fish down of the biomass has been compensated to some extent by increasing
productivity and recruitment, which means that the stocks have become increasingly reliant on recruitment events. As it is a live-fish fishery, there is very little fishing at
depths greater than 30 m, to avoid barotrauma. Fishers believe that stocks in deep water
habitats may buffer against overall stock decline, acting as a ‘refuge’ population.
Bastard trumpeter is a coastal schooling fish that resides on inshore reefs as juveniles,
moving offshore after maturing. The fishery exhibits strong recruitment variability, is
targeted by both commercial and recreational fishers and is based almost entirely on
juveniles. All make them vulnerable to overexploitation.
Large- and fine-scale acoustic monitoring was used to examine the temporal/spatial
movement patterns of both species on rocky reefs on the Tasman Peninsula. Banded
morwong were highly resident, occupying very small core areas of reef which were
maintained over the study period. Bastard trumpeters were more mobile, but a third of
the monitored individuals were site attached at the scale of the detection range of a
single receiver (~200 m). Both species were not detected on receivers separated by large
areas of sand (embayments and offshore reef), suggesting that these act as natural
barriers to movement.
Both species demonstrated clear diurnal activity patterns. Banded morwong fitted with
depth tags moved to depths > 20 m and up to 45 m each morning, returning to depths <
20 m in the afternoon. This movement was only observed during the spawning season
which suggests that the so called deep water stock that fishers believe acts as a refuge is
more likely to be temporary residents during the spawning season. If this is the case the
fishery is probably targeting a major component or all of the stock. Combined with the
observation that they are highly site attached and occupying core areas as small as 175
m2, fishing has the potential to cause localised depletion with the additional threat of
serial depletion. Given that morwong populations are partially structured by size it also
supports the hypothesis that the removal of biomass has led to reduced competition for
space, with smaller fish replacing larger fish removed by fishing.Spatial protection, even at a small scale (< 1 km2), is likely to provide protection to
morwong because they are highly site attached and are shown to share small patches of
reef. Trumpeter, although relatively more mobile, are also likely to benefit from spatial
protection because some individuals were shown to be site attached and were not
detected moving across sand boundaries between reefs.

Item Type: Report (Technical Report)
Authors/Creators:Barrett, NS and Buxton, CD and Semmens, JM and Lyle, JM and Forbes, E and Phelan, M
Keywords: Black jewfish Protonibea diacanthus, banded morwong Cheilodactylus spectabilis, bastard trumpeter Latridopsis forsteri, spawning aggregations, site fidelity, residency, acoustic monitoring, fisheries management, movement, home range, core areas, spatial management
Publisher: University of Tasmania
DOI / ID Number: 978-1-86295-570-7
Additional Information:

Copyright © 2010 The Tasmanian Aquaculture and Fisheries Institute, University of Tasmania and
Fisheries Research and Development Corporation 2010

Item Statistics: View statistics for this item

Actions (login required)

Item Control Page Item Control Page