Experimental and Computational Investigation of Flow about Low Aspect Ratio Ellipsoids at Transcritical Reynolds Numbers

by

David B. Clarke

National Centre Maritime Engineering and Hydrodynamics

Submitted in fulfilment of the requirements for the degree of
Doctor of Philosophy

University of Tasmania

December 2009
Declaration of originality and authority of access

This thesis contains no material which has been accepted for a degree or diploma by the University or any other institution. Except by way of background information and duly acknowledged in the thesis, and to the best of the candidates knowledge and belief no material previously published or written by another person except where due acknowledgement is made in the text of the thesis, nor does the thesis contain any material that infringes copyright.

This thesis may be made available for loan and limited copying in accordance with the Copyright Act 1968.

David B. Clarke
Abstract

As the role of unmanned underwater vehicles expands it becomes increasingly important to understand the nature of the fluid flow around them. This research examines the flow around two ellipsoids with generic shapes representative of streamline unmanned underwater vehicles (UUV). Although a significant body of work, both experimental and computational, exists for flow about spheroids the majority of this is for prolate spheroids with finer aspect ratio.

This research examines the flow around a 3–1 prolate spheroid and a 4.2–2–1 scalene ellipsoid. Many of the previous studies have focused on the major crossflow separation that occurs on a 6–1 prolate spheroid when placed at medium to large incidences. This study examines the flow around these bluffer bodies at low to moderate incidence in transcritical flow. These are the conditions that many UUV’s spend the vast majority of their time operating in, and is thus of importance when assessing their operational envelope.

At low to moderate incidence a closed separation on the flank is found to be the dominant flow feature for the 3–1 spheroid and the 4.2–2–1 ellipsoid. For the 4.2–2–1 ellipsoid at lower Reynolds numbers an open separation occurs on the flank upstream of the closed separation.

An extended length of attached flow on the suction side of the symmetry plane was observed for these models at incidence. The reasons for this attached flow despite a considerable length of adverse streamwise pressure gradient are identified to be due to the influence of the azimuthal pressure gradient on the boundary layer.

Ideally computational fluid dynamics (CFD) could be used to examine the flow about these shapes during the design process. However before this process is useful there needs to be an understanding of the strengths and weaknesses of the techniques being applied. Calculation of the three-dimensional flow around these vehicles presents a number of significant challenges including boundary layer transition and boundary layer separation off smooth doubly curved surfaces.

The experimental work has identified flow features and trends with Reynolds number; a considerable amount of quantitative data is also presented. The ability of CFD techniques to calculate the features and trends identified in the experimental work can be used as an
indication of their veracity. Numerical studies using two-equation turbulence models modified
to allow predetermined regions of laminar flow are presented. Qualitative and quantitative
comparisons between the measured and calculated results are presented. Limitations identified
in the CFD modelling techniques used include: premature boundary layer separation at the
rear of the model, typically on the pressure side; and separation of the laminar region prior to
the measured transition region at low Reynolds numbers.

A number of experimental techniques were refined during this work. These include a quick
and accurate method of applying discrete element boundary layer trip strips, which is particu-
larly suited to three-dimensional shapes; improvements to a fast response total pressure probe;
and an oil flow visualisation technique using a mixture that is close to neutrally buoyant and
may be formulated to alter the viscosity over a large range.
Contents

Abstract ... i
Acknowledgement ... vii
Nomenclature ... ix

1 Introduction .. 1

2 Literature Review .. 7
 2.1 Experimental Testing on Spheroids 7
 2.1.1 Other Relevant Studies ... 8
 2.1.2 DFVLR-AVA, Göttingen ... 8
 2.1.3 Virginia Polytechnic Institute and State University 10
 2.2 Computational Fluid Dynamics on Spheroids 14
 2.3 Summary .. 16

3 General Experimental Setup ... 17
 3.1 Cavitation Tunnel ... 17
 3.2 Support Foil .. 18
 3.3 3–1 Spheroid Model .. 18
 3.4 Vibration of 3–1 Spheroid Model 20
 3.5 4.2–2–1 Ellipsoid Model .. 21
 3.6 Vibration of 4.2–2–1 Ellipsoid Model 24

4 3–1 Spheroid Surface Pressure Measurements 25
 4.1 Introduction .. 25
 4.2 Experimental Setup .. 25
 4.3 Uncertainty Estimates for Surface Pressure Measurements 29
 4.4 Spheroid Surface Pressure Results 32
4.4.1 Spheroid at $\alpha = -0.2^\circ$... 33
4.4.2 Spheroid at $\alpha = -6.2^\circ$... 39
4.4.3 Spheroid at $\alpha = -10.2^\circ$... 46
4.4.4 Spheroid at $\alpha = -10.2^\circ$, Boundary Layer Tripped at 20\% of Total Length 51
4.5 Summary ... 56

5 4.2–2–1 Ellipsoid Surface Pressure Measurements 59
5.1 Experimental Setup .. 59
5.2 Ellipsoid Surface Pressure Results .. 60
 5.2.1 Ellipsoid at $\alpha = -0.2^\circ$... 61
 5.2.2 Ellipsoid at $\alpha = -6.2^\circ$... 69
 5.2.3 Ellipsoid at $\alpha = -10.2^\circ$... 73
 5.2.4 Ellipsoid at $\alpha = -10.2^\circ$, Boundary Layer Tripped at 20\% of Total Length 81
5.3 Summary ... 82

6 Force and Moment Measurements .. 85
6.1 3–1 Spheroid ... 85
 6.1.1 Setup and Calculations for External Balance 86
 6.1.2 Force and Moment Measurements 88
6.2 4.2–2–1 Ellipsoid Model ... 88
 6.2.1 Transducer Housing .. 90
 6.2.2 Calibration of Internal Six Component Transducer 93
 6.2.3 Setup and Calculations for Internal Transducer 94
 6.2.4 Estimate of Measurement Uncertainties 94
 6.2.5 Force and Moment Measurements 97

7 On-Body Flow Visualisation .. 105
7.1 Test Setup ... 106
7.2 3–1 Spheroid Flow Visualisation ... 109
 7.2.1 Spheroid at $\alpha = -10.2^\circ$, Boundary Layer Tripped at 20\% of Total Length 110
 7.2.2 Spheroid at $\alpha = -10.2^\circ$... 112
 7.2.3 Spheroid at $\alpha = -6.2^\circ$... 117
 7.2.4 Spheroid at $\alpha = -0.2^\circ$... 117
7.3 4.2–2–1 Ellipsoid Flow Visualisation 123
 7.3.1 Ellipsoid at $\alpha = -10.2^\circ$, Boundary Layer Tripped at 20\% of Total Length 123
 7.3.2 Ellipsoid at $\alpha = -10.2^\circ$... 125
 7.3.3 Ellipsoid at $\alpha = -6.2^\circ$... 130
7.3.4 Ellipsoid at $\alpha = -0.2^\circ$ 136

7.4 Summary .. 141

8 Boundary Layer Survey .. 143

8.1 Three-Dimensional Traverse System 143

8.2 Fast Response Total Pressure Probe 145

8.2.1 Probe Head and Tip 147

8.2.2 Probe Stem .. 153

8.3 Determining Model Position .. 155

8.4 Boundary Layer State .. 156

8.5 Spheroid Boundary Layer Survey Results 157

8.6 Ellipsoid Boundary Layer Survey Results 163

8.7 Ellipsoid Wake Survey .. 166

8.8 Summary .. 166

9 Numerical Study on the 3–1 Spheroid .. 169

9.1 User defined functions and other code 174

9.1.1 UDF - Cell Wall Distance 174

9.1.2 UDF - Laminar Zones 177

9.1.3 Calculation of Boundary Layer Properties 181

9.2 Results and Discussion for $\alpha = -0.2^\circ$ 184

9.2.1 $Re = 2.0 \times 10^6$.. 184

9.2.2 $Re = 3.5 \times 10^6$.. 200

9.3 Results and Discussions $\alpha = -10.2^\circ$ 208

9.3.1 $Re = 2.0 \times 10^6$.. 208

9.3.2 Flow Visualisation at $Re = 4.0 \times 10^6$ 209

9.3.3 Surface Pressure at $Re = 4.0 \times 10^6$ 213

9.3.4 Cross Flow Influence on the Boundary Layer 216

9.3.5 Drag Components .. 224

9.4 Results and Discussions $\alpha = -10.2^\circ$, Boundary Layer Tripped 228

9.5 Summary .. 233

10 Numerical Study on the 4.2–2–1 Ellipsoid .. 237

10.1 Results and Discussions for $\alpha = -0.2^\circ$ 241

10.2 Results and Discussions for $\alpha = -10.2^\circ$ 243

10.3 Ellipsoid Wake Survey at $\alpha = -10.2^\circ$ 250

10.4 Results and Discussions $\alpha = -10.2^\circ$, Boundary Layer Tripped 259
CONTENTS

10.5 Force and Moment Calculations 261
10.6 Summary ... 264

11 Conclusion ... 267

A Ellipsoid Potential Flow Calculations 273
A.1 Translation of Ellipsoid .. 276
A.2 Calculation of α_0 and γ_0 for Spheroid 278
A.3 Calculation of α_0 and γ_0 for Ellipsoid 279
A.4 Velocity on Ellipsoid Surface due to Translation 280

B Uncertainty Calculations for Surface Pressure Measurements 283
B.1 Inaccuracy Estimates .. 283
B.2 Imprecision Estimates .. 284

C Spheroid Surface Pressure Measurements: Constant Azimuth Plots 287
C.1 Spheroid Surface Pressure Distributions at $\alpha = -6.2^\circ$ 287
C.2 Spheroid Surface Pressure Distributions at $\alpha = -10.2^\circ$ 301
C.3 Spheroid Surface Pressure at $\alpha = -10.2^\circ$, Tripped $x_{bc}/l = -0.3$ 315

D Ellipsoid Surface Pressure Measurements: Constant Azimuth Plots 329
D.1 Ellipsoid Surface Pressure at $\alpha = -0.2^\circ$ 329
D.2 Ellipsoid Surface Pressure at $\alpha = -6.2^\circ$ 343
D.3 Ellipsoid Surface Pressure at $\alpha = -10.2^\circ$ 357
D.4 Ellipsoid Surface Pressure at $\alpha = -10.2^\circ$, Tripped $x_{bc}/l = -0.3$ 371

E Critical Point Toplogy ... 385

F Traverse Drawings .. 387

G 4.2–2–1 Ellipsoid Wake Measurements 389

Bibliography .. 393
Acknowledgements

The support of my employer, the Defence Science Technology Organisation (DSTO), has been pivotal to this research and is greatly appreciated. The head of the Maritime Platforms Division Hydrodynamics Group, Brendon Anderson provided unwavering support and encouragement. DSTO has funded the extensive array of equipment required for this research as part of a program to develop the capabilities of the Australian Maritime College Tom Fink Cavitation Tunnel.

Many of the staff at Boeing Australia have provided the support necessary for this research. The engineering drawings were produced by the Boeing Design Cell. John Xiberras was responsible for the engineering drawings for the spheroid, ellipsoid, model stings, internal balance housing, compound viewing windows, tare mount, and shroud for the support foil. These items often had a number of iterations so John’s patience and perseverance were valuable. Vinh Nguyen created the drawings for the three-dimensional traverse and Derek Ramsay for the fast response probe. Adam Woollett assisted with the graphics for the spheroid, ellipsoid, internal balance and traverse.

The Boeing Manufacturing Cell manufactured all the above items except the ellipsoid and its internal balance housing. Many members of this cell were involved in this process. Of special note are Paul Vella and Paul Copper who are able to perform miracles with a mill, and Ken Morgan whose pursuit of perfection, vast knowledge and willingness to share it is appreciated.

The electronics and firmware for the three-dimensional traverse was designed and written by Sasha Smiljanic of the Boeing Electronics Cell and manufactured by the Boeing Electronics Cell. The responsiveness and cheerfulness of all members of the Boeing Engineering team at Fishermans Bend made the manufacture of these items a positive experience.

Engineering support at the cavitation tunnel was provided by Robert Wrigley: his ability to make problems go away was invaluable. Daniel Price assisted with the surface pressure measurements on the spheroid.

Thanks to Dr David Jones for translating Eichelbrenner and Michel’s paper from French. The ellipsoid and internal balance housing were manufactured by Mark Harris, Peter Thornton,
Richard Andrews, and Peter Worden from DSTO’s Scientific Engineering Services Division.

Thanks to Hawk Lee and Dr Michael Roomina from Leap Australia who provided support for the Fluent CFD package.

Associate Professor Paul Brandner’s diverse talents, knowledge and unrelenting commitment to his work, coupled with the deep wells of knowledge provided by Visiting Research Professor Greg Walker, created a formidable supervision team. Their friendliness, humour and support made this task a more pleasant experience.

Lastly I thank my partner Kris for her love, patience, understanding and support throughout this work.
Nomenclature

General

\(a_e\) major axis length of spheroid or ellipsoid in x direction (m)

\(b_e\) minor axis length of spheroid or ellipsoid in y direction (m)

\(c_e\) minor axis length of spheroid or ellipsoid in z direction (m)

\(k\) turbulent kinetic energy per unit mass, \(u_i'u_j'/2\) (m\(^2\)/s\(^2\))

\(l\) length of spheroid or ellipsoid in \(x_{bc}\) direction, \(2a_e\) (m)

\(p\) static pressure (Pa)

\(p_T\) total pressure (Pa)

\(p'\) unsteady component of static pressure (Pa)

\(p_{frpp}\) pressure measured by fast response total pressure probe (Pa)

\(p_{ref}\) static pressure at reference point (Pa)

\(q_{ref}\) dynamic pressure at reference point, \(\rho u_{ref}^2/2\) (Pa)

\(u_{ref}\) absolute velocity at reference point (m/s)

\(u_t\) friction velocity, \(\sqrt{\tau_w/\rho}\) (m/s)

\(u, v, w\) velocity in the x, y and z direction respectively (m/s)

\(u', v', w'\) unsteady velocity component in the x, y and z direction respectively (m/s)

\(A_{x_{bc}}\) maximum cross-section area of the model normal to \(x_{bc}\) (m\(^2\))

\(C_p\) non-dimensional pressure, \((p - p_{ref})/q_{ref}\)

\(C_{\tau w}\) non-dimensional wall shear stress, \(\tau_{w}/q_{ref}\)

\(E\) elastic modulus (Pa)

\(H\) shape factor, \(\delta^*/\theta\)

\(N\) number of samples

\(U_\infty\) freestream velocity (m/s)

\(V_e\) volume of spheroid or ellipsoid model, \(\frac{4}{3}\pi a_e b_e c_e\)

\(Re_l\) Reynolds number based on length, \(U_\infty l/v\)

\(Re_s\) maximum strain rate Reynolds number

\(Re_{\delta^*}\) Reynolds number based on displacement thickness, \(U_\infty \delta^*/v\)
Re$_{\theta}$ Reynolds number based on momentum thickness, $U_\infty \theta / v$
Re$_{\varepsilon}$ maximum vorticity Reynolds number

x_{bc} Cart. coord. aligned with major axis of body, origin at centre of model (m)
x$_t$ Cart. coord. aligned with longitudinal direction of the test section, origin at centre of test section (m)
x$\tilde{\gamma}_l$ streamwise location of $\tilde{\gamma}_l$ in body coordinates (m)
y$_{bc}$ Cart. coord. aligned with horizontal minor axis of body, origin at centre of model (m)
y$_t$ Cart. coord. aligned with horizontal direction of the test section, origin at centre of test section (m)
y$_P$ distance from nearest wall (m)
y$^+$ non-dimensional distance from wall, $u_t y_P / v$
y$_C$ non-dimensional distance from wall, $u_t y_P / v$

y_{bc} Cart. coord. aligned with vertical minor axis of body, origin at centre of model (m)

z_t Cart. coord. aligned with vertical direction of the test section, origin at centre of test section (m)

α angle of incidence ($^\circ$)
γ instantaneous intermittency of turbulence
$\bar{\gamma}$ time averaged intermittency of turbulence
$\bar{\gamma}_l$ time averaged intermittency of turbulence of a constant value i
δ boundary layer thickness (m)
δ^* displacement thickness, $\int_0^\infty (1 - u(y)/u_0)\,dy$ (m)
ε dissipation rate of turbulent kinetic energy (m^2/s^3)
θ momentum thickness, $\int_0^\infty (u(y)/u_0)(1 - u(y)/u_0)\,dy$ (m)
ν kinematic viscosity (m^2/s)
ρ density (kg/m^3)
ρ_w density of water, at 20°C, 101.325 kPa is 998.2 kg/m3
τ_w wall shear stress (Pa)
φ azimuthal angle, measured from the symmetry plane on the windward side ($^\circ$)
φ_e azimuthal angle mapped to an ellipse, measured from the windward side ($^\circ$)
ω specific dissipation rate of turbulent kinetic energy (1/s)
Surface Pressure

\(k_{cont} \)
\(k_{Rose} \)
\(k_{Validyne} \)
\(C_P \)
\(C_{P_i} \)
\(C_{V_i}^{ref} \)
\(P_i \)
\(P_{ref} \)
\(P_{I,ref} \)
\(P_{I,ref,corrected} \)
\(P_{i,dynamic} \)
\(Re_k \)
\(V_{P_i-P_{ref}} \)
\(V_{P_{Rose}} \)
\(V_{P_{Rose,zero}} \)
\(\sigma_i \)
\(\epsilon_i \)

Force Measurements and Calculations

\(\alpha_t \)
\(x_{eb} \)
\(y_{eb} \)
\(z_{eb} \)
\(\Delta x_{bc,eb} \)
\(\Delta z_{bc,eb} \)
\(A_{x_{bc}} \)
\(A_{base_{x_{bc}}} \)
\(A_{foil_{z_{eb}}} \)
\(A_{sting_{y_{eb}}} \)
C_F force coefficient, $F/(q_{ref}A_{bc})$

C_{Ti} moment coefficient, $T/(q_{ref}A_{bc}l)$

D force parallel to flow direction at U_∞, drag (N)

F_i force on external surfaces in the i direction due to flow (N)

F_{mi} force measured in the i direction due to flow (N)

F_{mli} force measured in the i direction due to flow during tare correction (N)

L force perpendicular to flow direction at U_∞, lift (N)

P_{base} static pressure inside the model (Pa)

P_{eb} internal pressure of the external balance housing (Pa)

P_{tbase} static pressure inside the model during tare correction (Pa)

\tilde{P}_{lsf} average static pressure over the lower surface of the support strut (Pa)

\tilde{P}_{tlsf} average static pressure over the lower surface of the support strut during tare correction (Pa)

T_i moment on external surfaces about the i direction due to flow (Nm)

T_{mi} moment measured about the i direction due to flow (Nm)

T_{mli} moment measured about the i direction due to flow during tare correction (Nm)

Boundary Layer Survey

f_{dia} 1st resonant frequency of sensor diaphragm in air (Hz)

f_H frequency of the Helmholtz resonator formed by probe cavity (Hz)

f_{wd} 1st resonant frequency of the probe considering only the mass of water and the stiffness of the diaphragm (Hz)

l_i length of probe section with internal radius r_i (m)

l_z axial distance from narrowest part of the conical section (m)

m_i mass of water in probe section (kg)

m_{eff} effective mass of water in probe at sensor diaphragm (kg)

p_{sen} static pressure at the sensor (Pa)

p_{vap} vapour pressure (Pa)

r_i internal radius of probe section (includes probe tip and head) (m)

r_{cc} radial variable for cylindrical coordinate system (m)

t_{sen} thickness of sensor diaphragm (m)

v_i average velocity of fluid in probe (m/s)

v_{ss} speed of sound in water (m/s)

x_{tr} Cart. coord. of traverse, parallel with x_t, different origin (m)
x_{trp} estimate of location of boundary layer transition from pressure measurements (m)

y_{tr} Cart. coord. of traverse, parallel with z_t, different origin (m)

$z_{cc(rcc)}$ height variable for cylindrical coordinate system, function of radial position (m)

z_{tr} Cart. coord. of traverse, parallel with y_t, different origin (m)

C_{dia} relative compliance of the diaphragm

E_{sen} elastic modulus of sensor diaphragm (Pa)

K_{bm} bulk modulus (Pa)

Re_D Reynolds number based on sting diameter

V_i volume of probe section (m³)

Δp_{sen} pressure applied to diaphragm movement to cause ΔV_{sen}, (Pa)

$\Delta p_{sen_{max}}$ pressure applied to diaphragm movement to cause $\Delta V_{sen_{max}}$ (Pa)

ΔV_{sen} volume displaced by diaphragm movement (m³)

$\Delta V_{sen_{max}}$ maximum volume displaced by diaphragm movement (m³)

ξ non-dimensional length used in plotting intermittency of turbulence

ρ_{dia} density of sensor diaphragm (kg/m³)

σ_c cavitation number

θ_{cc} azimuthal variable for cylindrical coordinate system (°)

θ_{tr} rotation angle about y_{tr} (°)

v_p Poisson’s ratio

ϕ_{tr} rotation angle about z_{tr} (°)

ψ_{tr} rotation angle about x_{tr} (°)

Subscript

in inlet section of probe including tip

con conical section of probe between inlet and sensor section

sen sensor sections of probe

trp location of boundary layer transition estimated from the surface pressure distribution

CFD

$a1$ constant used with SST turbulence model, set to 0.31

A_{blend} constant used in calculating sharpness of blending for $\mu_{t,enh}$

$F1, F2$ blending functions for the SST turbulence model

H_{Λ} estimate of shape factor allowing for the influence of crossflow

p_{e} static pressure at the edge of the boundary layer (Pa)
average static pressure at the wall (Pa)

velocity in the x_A and y_A direction respectively (m/s)

coordinate aligned with the external streamline (m)

coordinate in the crossflow direction (m)

coordinate normal to the surface (m)

distance to nearest wall, (m)

Wall y plus, non-dimensional parameter

turbulent Reynolds number

constant used in calculating sharpness of blending for $\mu_{t,enh}$

momentum thickness Reynolds number based

absolute value of the mean rate-of-strain tensor (1/s)

velocity outside the boundary layer (m/s)

velocity along the streamline at the edge of the boundary layer (m/s)

low Reynolds number correction for SST turbulence model

streamwise displacement thickness (m)

crossflow displacement thickness (m)

constant used in calculating sharpness of blending function

streamwise momentum thickness (m)

influence of crossflow on $\delta^{*}_{x_A}$ (m)

blending function used with enhanced wall treatment

Holstein-Bohlen parameter

parameter used to calculate boundary layer properties

blended turbulent viscosity used in with enhanced wall treatment ($Pa s$)

molecular viscosity ($Pa s$)

turbulent viscosity in fully turbulent region ($Pa s$)

turbulent viscosity in near wall region ($Pa s$)

absolute value of the vorticity (1/s)

coord. used in calculation of displacement thickness, x parallel to flow at boundary layer edge, z normal to surface.
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC</td>
<td>Analog-to-Digital Converter</td>
</tr>
<tr>
<td>AMC</td>
<td>Australian Maritime College</td>
</tr>
<tr>
<td>CFD</td>
<td>Computational Fluid Dynamics</td>
</tr>
<tr>
<td>DES</td>
<td>Detached Eddy Simulation</td>
</tr>
<tr>
<td>DSTO</td>
<td>Defence Science and Technology Organisation</td>
</tr>
<tr>
<td>DyPPiR</td>
<td>Dynamic Plunge-Pitch-Roll</td>
</tr>
<tr>
<td>DTP</td>
<td>Differential Pressure Transducer</td>
</tr>
<tr>
<td>FRTPP</td>
<td>Fast Response Total Pressure Probe</td>
</tr>
<tr>
<td>FSP</td>
<td>Full Scale Pressure</td>
</tr>
<tr>
<td>LES</td>
<td>Large Eddy Simulation</td>
</tr>
<tr>
<td>LDV</td>
<td>Laser Doppler Velocimeter</td>
</tr>
<tr>
<td>NACA</td>
<td>National Advisory Committee for Aeronautics</td>
</tr>
<tr>
<td>NNEMO</td>
<td>Newport News Experimental Model</td>
</tr>
<tr>
<td>PC</td>
<td>Personal Computer</td>
</tr>
<tr>
<td>PID</td>
<td>Proportional-Integral-Derivative</td>
</tr>
<tr>
<td>PIV</td>
<td>Particle Image Velocimetry</td>
</tr>
<tr>
<td>PVC</td>
<td>Peak Valley Counting</td>
</tr>
<tr>
<td>PVC</td>
<td>Polyvinyl Chloride</td>
</tr>
<tr>
<td>RANS</td>
<td>Reynolds Averaged Navier–Stokes</td>
</tr>
<tr>
<td>ROV</td>
<td>Remotely Operated Vehicle</td>
</tr>
<tr>
<td>URANS</td>
<td>Unsteady Reynolds averaged Navier–Stokes</td>
</tr>
<tr>
<td>UDF</td>
<td>User Defined Function</td>
</tr>
<tr>
<td>UDM</td>
<td>User Defined Memory</td>
</tr>
<tr>
<td>UUV</td>
<td>Unmanned Underwater Vehicle</td>
</tr>
<tr>
<td>VPI</td>
<td>Virginia Polytechnic Institute and State University</td>
</tr>
</tbody>
</table>