Culture of striped trumpeter
(Latris lineata) post-larvae

Bryan Y. Choa

B. Sc. [Business Management]
(Ateneo de Manila University),
M. Sc. [Aquaculture]
(University of Stirling)

Submitted in fulfilment of the requirements for the
Degree of

Doctor of Philosophy

University of Tasmania

June 2010
Declaration of originality

I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institution of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given at the end of every chapter.

Signed: Bryan Choa

Authority of access

This thesis may be made available for loan and limited copying in accordance with the Copyright Act 1968.

Signed: Bryan Choa
Statement regarding published work contained in the thesis

The publishers of the papers comprising Chapters Two and Three hold the copyright for that content, and access to the material should be sought from respective journal websites. The remaining non published content of the thesis may be made available for loan and limited copying in accordance with the Copyright Act 1968.

Signed: Bryan Choa

Statement of ethical conduct

The research associated with this thesis abides by the international and Australian codes on human and animal experimentation, the guidelines by the Australian Government’s Office of the Gene Technology Regulator and the rulings of the Safety, Ethics and Institutional Biosafety Committees of the University.

Signed: Bryan Choa
Statement of co-authorship

I declare that the content and the manuscripts published from this thesis are the products of my own work. I was responsible for executing experiments, sampling, data collection, laboratory analysis, analysing the data, writing draft manuscripts and thesis chapters, submission to peer review journals and incorporating revisions into the final written product.

This research was funded by the following institutions: Australian Government’s Aquafin Cooperative Research Centre Program, Fisheries Research & Development Corporation, the Tasmanian Government and the University of Tasmania. I would also like to acknowledge the support of an International Postgraduate Research Scholarship granted by the University of Tasmania and further financial support through the Tasmanian Aquaculture and Fisheries Institute and the National Centre for Marine Conservation and Resource Sustainability.

This research was supervised by Associate Professor Stephen C. Battaglene and Professor Chris Carter. Associate Professor Battaglene secured the grants to fund this work and coordinated the facilities and the logistical support to conduct the experimental work at the Marine Research Laboratories, Taroona. Professor Carter coordinated the use of the laboratory facilities at the University of Tasmania’s Launceston campus for feed manufacturing and laboratory analysis. My supervisors provided advice regarding planning, experimental design, data analysis and modelling, statistical analysis, data presentation and manuscript editing. In recognition of their contribution they are co-authors on the two papers submitted for
publication at the time of submission. Associate Professor Natalie Moltschaniwskyj (University of Tasmania) provided advice regarding statistical analysis.

I also acknowledge the assistance of other researchers and technicians who helped me in achieving my research goals.

Dr Jennifer Cobcroft (Marine Research Laboratories, Taroona) measured larvae and assessed the severity of jaw malformations of the sampled animals. Associate Professor Stephen Battaglene, Ross Goldsmid and Anna Overweter provided assistance with live feed production and during sampling. Dr Matthew Bransden (Skretting – Australia) provided the microdiets used for the experiment.

Chapter 3: Effects of temperature regime on growth and development of post-larval striped trumpeter (*Latris lineata*) (Choa, B.Y., Carter, C.G. and Battaglene, S.C. under review in *Aquaculture*)

Ross Goldsmid, Alan Beech, Karl van Drunen, Anna Overweter, Bill Wilkinson and Dr Gavin Shaw assisted me with the construction of the experimental system and during sampling. Dr Thomas Rodemann (University of Tasmania) performed the elemental analysis. Dr Sean Tracey (Marine Research Laboratories, Taroona) provided data on striped trumpeter post-larvae metamorphosis.
Chapter 4: Effects of ration and dietary lipid on growth and development of post-larval striped trumpeter (*Latris lineata*)

Ross Goldsmid, Alan Beech, Anna Overweter, Bill Wilkinson and Debbie Gardner assisted me during sampling days. Dr Thomas Rodemann (University of Tasmania) performed elemental analysis. Dr Robin Katersky (University of Tasmania) coordinated the manufacturing and analysis of diets used for the experiment.

Chapter 5: Modelling nutrient requirements of post-larval striped trumpeter (*Latris lineata*)

Dr Thomas Rodemann (University of Tasmania) performed elemental analysis on the samples.

Chapter 6: Chemical composition of striped trumpeter (*Latris lineata*) throughout its life-cycle

Dr Ashley Townsend (University of Tasmania) performed the elemental analysis via ICP-OES. Daniel Pountney (University of Tasmania) performed the acid digestion. Dr Thomas Rodemann (University of Tasmania) performed elemental analysis on the samples.
Acknowledgements

I would like to express my utmost gratitude to my supervisors Associate Professor Stephen Battaglene and Professor Chris Carter. Your unfailing support, guidance and gentle prodding have been invaluable to the completion of this study. I am extremely privileged to have had the opportunity to work with scientists of your stature.

I would like to thank the current and former scientists and technicians part of the Striped Trumpeter Research Team at the Marine Research Laboratories. Your experience, knowledge, technical support and friendship made experimental work educational and pleasant. To Dr Jenny Cobcroft, Ross Goldsmid, Ana Overweter, Alan Beech, Bill Wilkinson, Tanaz Jungawalla, Deborah Gardner and Dr Gavin Shaw, thank you. To Clare Woolridge thank you for providing another pair of eyes to proofread this manuscript.

My thanks to the Australian Government's Aquafin Cooperative Research Centre Program, Fisheries Research & Development Corporation, the Tasmanian Government and the University of Tasmania for funding this research. I am indebted to the University of Tasmania for the generous International Postgraduate Research Scholarship which made my study in Tasmania possible.

To Dr Matthew Bransden, thank you for introducing me to Tasmania, for helping me get settled into Hobart and for your continuous support during my candidature.
I would like to acknowledge the assistance of the staff and faculty of the National Centre for Marine Conservation and Resource Sustainability and the Marine Research Laboratories. I would like to specially mention Associate Professor Natalie Moltschaniwskyj for advising me regarding statistics, Dr Robin Katersky for assisting me with laboratory analysis, and Dr Sean Tracey for sharing his experience with striped trumpeter biology.

I would like to thank my parents for their ceaseless support of my decisions and for always making the effort to remain in contact. Thank you to my siblings, Bibi, Pat and Mark. Thank you to all of the friends I’ve made in Tasmania who’ve shown me that the beauty of this land is also in its people.

To my wife Jessica, thank you for always making the good moments better and for easing the sting of bad ones. Thank you for sharing this journey with me. This work could not have been completed without you.
Table of Contents

ABSTRACT .. 1

1. CHAPTER ONE. GENERAL INTRODUCTION ... 4
 1.1 WORLD AQUACULTURE .. 4
 1.2 AQUACULTURE IN AUSTRALIA AND TASMANIA ... 5
 1.3 DIVERSIFICATION, IS IT NECESSARY? ... 7
 1.4 THE STRIPED TRUMPETER: A NEW SPECIES FOR AQUACULTURE 8
 1.5 STRIPED TRUMPETER NUTRITION RESEARCH .. 13
 1.6 SCOPE AND OBJECTIVES ... 14
 1.6.1 Chapter Two. Weaning strategies for striped trumpeter (Latris lineata) post-larvae culture ... 17
 1.6.2 Chapter Three. Effects of temperature regime on growth and development of striped trumpeter (Latris lineata) post-larvae 18
 1.6.3 Chapter Four. The effects of ration and dietary lipid on growth of post-larval striped trumpeter (Latris lineata) ... 18
 1.6.4 Chapter Five. Modelling nutrient requirements of post-larval striped trumpeter (Latris lineata) .. 19
 1.6.5 Chapter Six. Chemical composition of striped trumpeter (Latris lineata) throughout its life-cycle ... 19
 1.7 ANIMAL ETHICS APPROVAL ... 20
 1.8 THESIS STRUCTURE .. 20
 1.9 REFERENCES .. 21

2. CHAPTER TWO. WEANING STRATEGIES FOR STRIPED TRUMPETER (LATRIS LINEATA) POST-LARVAE CULTURE 32
 2.1 ABSTRACT ... 32
 2.2 INTRODUCTION .. 33
 2.3 MATERIALS AND METHODS .. 35
 2.3.1 Rearing of post-larvae .. 35
 2.3.2 Feeds .. 36
 2.3.3 Experimental system .. 37
 2.3.3.1 Experiment one: performance comparison of post-larvae fed using Artemia, co-feeding and a microdiet ... 37
2.3.3.2 Experiment two: Effects of the duration of the co-feeding on post-larval performance .. 38
2.3.4 Larval sampling .. 38
2.3.5 Statistical analyses... 39
2.4 RESULTS ... 40
 2.4.1 Survival .. 40
 2.4.2 Growth .. 41
 2.4.3 Jaw malformations ... 44
2.5 DISCUSSION ... 46
2.6 ACKNOWLEDGEMENTS ... 50
2.7 REFERENCES .. 51

3. CHAPTER THREE. EFFECTS OF TEMPERATURE REGIME ON GROWTH AND DEVELOPMENT OF STRIPED TRUMPETER (LATRIS LINEATA) POST-LARVAE .. 56
3.1 ABSTRACT .. 56
3.2 INTRODUCTION ... 57
3.3 MATERIALS AND METHODS ... 59
 3.3.1 Source of animals and experimental system 59
 3.3.2 Experimental design .. 60
 3.3.3 Chemical analysis ... 63
 3.3.4 Calculations .. 63
 3.3.5 Statistical analysis ... 64
3.4 RESULTS .. 65
 3.4.1 Temperature and survival .. 65
 3.4.2 Growth .. 65
 3.4.3 Chemical composition .. 75
 3.4.4 Nutrient retention efficiency .. 77
 3.4.5 Metamorphosis .. 79
3.5 DISCUSSION ... 82
3.6 ACKNOWLEDGEMENTS ... 85
3.7 REFERENCES .. 87

4. CHAPTER FOUR. THE EFFECTS OF RATION AND DIETARY LIPID ON GROWTH OF POST-LARVAL STRIPED TRUMPETER (LATRIS LINEATA) ... 92
4.1 ABSTRACT .. 92
4.2 INTRODUCTION ... 94
Table of Contents

4.3 MATERIALS AND METHODS ... 96
 4.3.1 Experimental diets .. 96
 4.3.2 Source of animals and experimental system 98
 4.3.3 Experimental design ... 98
 4.3.4 Chemical analysis ... 100
 4.3.5 Calculations ... 100
 4.3.6 Statistical analysis ... 101

4.4 RESULTS .. 102
 4.4.1 Survival ... 102
 4.4.2 Growth and development .. 102
 4.4.3 Feed intake and food conversion efficiency 105
 4.4.4 Chemical composition ... 107
 4.4.4.1 Moisture .. 107
 4.4.4.2 Ash .. 108
 4.4.4.3 Crude protein ... 108
 4.4.4.4 Total lipid ... 109
 4.4.5 Nutrient retention efficiency ... 109
 4.4.6 Estimation of optimum ration ... 109
 4.4.7 Estimation of thresholds for metamorphosis into juveniles 114

4.5 DISCUSSION ... 119
 4.5.1 Growth and identifying the optimum ration 119
 4.5.2 Metamorphosis and development ... 125
 4.5.3 Conclusion .. 127

4.6 ACKNOWLEDGEMENTS .. 127

4.7 REFERENCES ... 128

5. CHAPTER FIVE. MODELLING NUTRIENT REQUIREMENTS OF
 POST-LARVAL STRIPED TRUMPETER (LATRIS LINEATA) 136

5.1 ABSTRACT ... 136

5.2 INTRODUCTION ... 138

5.3 MATERIALS AND METHODS .. 139
 5.3.1 Modelling protein and energy requirements: determination of metabolic weight exponents ... 139
 5.3.2 Chemical analysis ... 141
 5.3.3 Calculations ... 141
 5.3.4 Factorial modelling .. 142
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4 RESULTS</td>
<td>142</td>
</tr>
<tr>
<td>5.4.1 Determination of the metabolic weight exponent</td>
<td>142</td>
</tr>
<tr>
<td>5.4.2 Factorial models</td>
<td>148</td>
</tr>
<tr>
<td>5.5 DISCUSSION</td>
<td>155</td>
</tr>
<tr>
<td>5.6 ACKNOWLEDGEMENTS</td>
<td>161</td>
</tr>
<tr>
<td>5.7 REFERENCES</td>
<td>162</td>
</tr>
<tr>
<td>6. CHAPTER SIX. CHEMICAL COMPOSITION OF STRIPED TRUMPETER (LATRIS LINEATA) THROUGHOUT ITS LIFE-CYCLE</td>
<td>165</td>
</tr>
<tr>
<td>6.1 ABSTRACT</td>
<td>165</td>
</tr>
<tr>
<td>6.2 INTRODUCTION</td>
<td>166</td>
</tr>
<tr>
<td>6.3 MATERIALS AND METHODS</td>
<td>168</td>
</tr>
<tr>
<td>6.3.1 Production protocol for striped trumpeter at MRL</td>
<td>168</td>
</tr>
<tr>
<td>6.3.2 Sampling protocol</td>
<td>171</td>
</tr>
<tr>
<td>6.3.3 Chemical analysis</td>
<td>171</td>
</tr>
<tr>
<td>6.3.4 Elemental analysis</td>
<td>172</td>
</tr>
<tr>
<td>6.3.5 Calculations and statistical analysis</td>
<td>173</td>
</tr>
<tr>
<td>6.4 RESULTS</td>
<td>174</td>
</tr>
<tr>
<td>6.4.1 Chemical composition of growth</td>
<td>174</td>
</tr>
<tr>
<td>6.4.2 Comparison of post-larvae and juveniles</td>
<td>176</td>
</tr>
<tr>
<td>6.4.3 Mineral and trace element composition</td>
<td>179</td>
</tr>
<tr>
<td>6.4.4 Composition of broodstock and eggs</td>
<td>182</td>
</tr>
<tr>
<td>6.5 DISCUSSION</td>
<td>184</td>
</tr>
<tr>
<td>6.6 ACKNOWLEDGEMENTS</td>
<td>193</td>
</tr>
<tr>
<td>6.7 REFERENCES</td>
<td>194</td>
</tr>
<tr>
<td>7. GENERAL DISCUSSION</td>
<td>200</td>
</tr>
<tr>
<td>7.1 THE USE OF FORMULATED DIETS IN STRIPED TRUMPETER POST-LARVAE CULTURE</td>
<td>202</td>
</tr>
<tr>
<td>7.2 POST-LARVAE: AN IMPORTANT LIFE-HISTORY STAGE</td>
<td>203</td>
</tr>
<tr>
<td>7.3 METAMORPHOSIS INTO JUVENILES</td>
<td>204</td>
</tr>
<tr>
<td>7.4 NUTRIENT RETENTION OF STRIPED TRUMPETER POST-LARVAE</td>
<td>206</td>
</tr>
<tr>
<td>7.5 FUTURE DIRECTIONS FOR RESEARCH</td>
<td>212</td>
</tr>
<tr>
<td>7.6 CONCLUSION</td>
<td>214</td>
</tr>
<tr>
<td>7.7 REFERENCES</td>
<td>215</td>
</tr>
</tbody>
</table>