Airway remodelling in smokers with or without chronic obstructive pulmonary disease (COPD) and the effects of inhaled corticosteroids on remodelling in COPD

By

Dr. Amir Soltani Abhari (M.D.)

Submitted in fulfilment of the requirements for the Degree of

Doctor of Philosophy (PhD)

University of Tasmania

November 2010
Declaration of Originality

This thesis contains no material which has been accepted for a degree or diploma by the University or equivalent institutions, except by the way of background information and duly acknowledged in the thesis, and to the best of my knowledge and belief no material previously published or written by another person except where due acknowledgement is made in the text of this thesis, nor does the thesis contain any material that infringes copyright.

Amir Soltani

A statement on authority of access

This thesis may be made available for loan. Copying of any part of this thesis is prohibited for two years form the date this statement was signed; after that time limited copying is permitted in accordance with the copyright act 1968.

Amir Soltani
Statement of Ethical Conduct

The research associated with this thesis abides by the international and Australian codes on human and animal experimentation, the guidelines by the Australian Government’s Office of the Gene Technology Regulator and the rulings of the Safety, Ethics and Institutional Biosafety Committees of the University.

Amir Soltani

Statement regarding published work contained in thesis

The publishers of the paper comprising Chapter Five hold the copyright for that content and access to the material should be sought from the respective journal (Respirator Research is an open access journal and available at: http://respiratory-research.com/content/11/1/105). The remaining nonpublished content of the thesis may be made available for loan and limited copying in accordance with the Copyright Act 1968.

Amir Soltani
Abstract

Introduction: Smoking-related COPD is a worldwide health problem. Airway remodelling is defined as structural changes occurring in chronic inflammatory diseases of the airways. Our knowledge about airway remodelling in COPD is very limited. My preliminary observational study of bronchial biopsies (BB) from COPD subjects revealed reticular basement membrane (Rbm) fragmentation and vascular changes. I hypothesised that these changes are specific for COPD and are related to the angiogenic activity of vascular endothelial growth factor (VEGF) and transforming growth factor-β (TGF-β). I also aimed to study the effects of inhaled corticosteroids (ICS) on these airway changes.

Methods: A cross-sectional study compared BB from current smokers with COPD (S-COPD), ex-smokers with COPD (ES-COPD), current smokers with normal lung function (S-N) and healthy nonsmoking (H-N) subjects. BB were stained with anti-Collagen IV, anti-VEGF and anti-TGF-β antibodies. Rbm fragmentation and vessels in the Rbm and lamina propria (LP) were measured. Anti-Factor VIII antibody was compared with anti-Collagen IV antibody in detecting vessels.

Then a double-blind, randomized and placebo controlled study assessed the effects of ICS on airway remodelling, VEGF and TGF-β in COPD.

Results: Airway remodelling changes were also detectable in S-N. The Rbm was fragmented. The length of splits was significantly greater in both COPD groups and in S-N than controls (p<0.02). The Rbm was hypervascular and the LP hypovascular in current smokers compared with controls (p<0.05). Vessels stained for VEGF and TGF-β were increased in the Rbm of both COPD groups and S-N (p<0.05). Factor VIII
antibody confirmed my finding of hypovascularity of the LP in S-COPD. ICS reversed Rbm splitting but did not have any effect on vessel remodelling and angiogenic activities.

Discussion: My studies revealed novel aspects of Rbm and vascular remodelling in BB from COPD subjects and S-N and for the first time showed that ICS are effective on Rbm changes in COPD. Rbm fragmentation, we think, is probably a consequence of the effects of proteolytic enzymes on the Rbm due to activation of epithelial-mesenchymal transition (EMT) by smoking. This is under more investigation in our group. My study could not explain the mechanisms to vessel changes in current smokers. Further studies to examine the role of other angiogenic/antiangiogenic factors are now needed. Absence of vascular changes in ES-COPD subjects may imply that vascular remodelling is reversible with smoking cessation, but to test this we need a longitudinal smoking cessation study.
Publications

Publications:

• Sukhwinder S. Sohal, David Reid, Amir Soltani, Chris Ward, Steven Weston, H. Konrad Muller, Richard Wood-Baker, E. Haydn Walters “Reticular basement membrane fragmentation and potential epithelial mesenchymal transition is exaggerated in the airways of smokers with chronic obstructive pulmonary disease.” Accepted for publication in Respirology, August 2010, 15 (6), in press. [Original article]

 http://www.sciencedirect.com/science/journal/01637258

• Walters EH, Soltani A, Reid DW, Ward C. “Vascular remodeling in asthma.” Current Opinion in Allergy and Clinical Immunology, 2008; 8:39-43. [Review article]
 http://journals.lww.com/co-allergy/pages/default.aspx
Conference Presentations and Abstracts

Abstracts:

- **Soltani**, D. Reid, S.S. Sohal, H.K. Muller, S. Weston, R. Wood-Baker, E.H. Walters. “Vascular and basement membrane remodeling in smokers and COPD.” *European Respiratory Journal* 2009; 34: supplement 53, 48s. [Abstract]. This abstract was presented as an E-communication in the
S.S. Sohal, D. Reid, A. Soltani, C. Ward, S. Weston, H.K. Muller, R. Wood-Baker, E.H. Walters. “Smoking has potential to initiate basement membrane disruption and epithelial mesenchymal transition in COPD.”

Abstract listed below is not directly related to the content of my thesis:

• **Soltani A**, Reid D, Almond I, Walters EH, Wood-Baker R. “Survey of comorbidities in acute exacerbations of chronic obstructive pulmonary disease.” **Respirology** 2009; 14: Supplement 1, A53. [Abstract]. This abstract was presented as a poster in the TSANZ Annual Scientific Meeting in Darwin, April 2009.

 http://www3.interscience.wiley.com/cgi-bin/fulltext/122257085/PDFSTART
Acknowledgments

I would like to thank Professor Eugene Haydn Walters, my supervisor, for his constant support during my PhD. Professor Walters has been available and has given much time to my work throughout my PhD. His encouragement helped me go through all this hard work. I developed my skills of research and presenting my findings with his instructions. But more important to all these, Professor Walters has been a very good friend of mine for years.

I would also like to thank A/Professor Richard Wood-Baker, my associate supervisor. Feedbacks from A/Professor Wood-Baker supported my skill development throughout my PhD.

I would also like to thank Dr. David Reid, my associate supervisor. Dr. Reid was very supportive and I used his advice and feedbacks to develop my skills of presenting my results.

Professor Hans Konrad Muller gave advice in histopathological aspects of my researches. I wish to thank for his kind support.

Great thanks to Dr. Julia Walters for her availability and time to answer my questions. I used her experience to develop my skills in analysis of my data and presenting my findings.

I also thank Dr. Chris Ward, from Newcastle University, in Newcastle upon Tyne, U.K, for his advice on computerised image analysis tool.

Thanks to Mr. Steve Weston, the manager of the Respiratory Research Laboratory in Menzies Research Institute, for supporting me to learn techniques and sharing his vast experience in laboratory work. Most importantly he has been a very supportive friend.

I thank Dr. Steve Quinn for his advice on statistics.

Many thanks to Dr. Leigh Blizzard for his supportive and important role as graduate research co-ordinator in Menzies Research Institute and University of Tasmania throughout my journey to complete my PhD.

I also would like to thank my very good friend Mr. Sukhwinder Singh Sohal. We entered Australia the same day and have been working alongside each other during our PhD training for the last four years.
I should not forget other people who supported my work in Information Technology (IT), Dace Shugg, Dr. Helen Cameron-Tucker, a good friend, and all administration including Dr. A.C. Yong.

Finally, I would love to thank my family: Parisa, Ehsan and Sara who gave me the courage, energy and hope to move forward every single day in this journey and generously supported me from the very early steps to the accomplishment of my doctorate.

Amir Soltani
Abbreviations and symbols

Abbreviations
AECOPD = Acute exacerbations of COPD
AHR = Airway hyper-responsiveness, same as BHR
AM = Alveolar macrophage
ATS = American Thoracic Society
BAL = Broncho-alveolar lavage
BALF = Broncho-alveolar lavage fluid
BB = Per-bronchoscopic bronchial biopsies
BDR = Bronchodilator responsiveness
BM = Basement membrane
bFGF = Basic fibroblast growth factor
BHR = Bronchial hyper-responsiveness
CD (#) (like CD31 etc.) = Are surface antigens that are detectable by using different antibodies and are used to address different kinds of cells in the hematopoietic and tissue mononuclear-macrophage cellular system.
Cm = centimeter
CoR = Coefficient of repeatability
CT-scan = Computerized tomography scan
Dmin = The dose of methacholine that provokes 20% decrease in FEV1. It shows the presence and the severity of BHR.
ECM = Extracellular matrix
ELISA = Enzyme linked immunosorbent assay
EMT = Epithelial-mesenchymal transition
ERS = European Respiratory Society
ES-COPD = Exsmoker COPD
FEV1 = Forced expiratory volume in first second
FER = Forced expiratory ratio = FEV1/FVC ratio x 100
FOB = Fiberoptic bronchoscope
FP = Fluticasone propionate
FVC = Forced vital capacity
DNA = deoxy ribonucleic acid
GOLD = Global Initiative for Chronic Obstructive Lung Disease
GR = Glucocorticoid receptor
GM-CSF = Granulocyte-macrophage colony stimulating factor
H-N = Healthy and nonsmoker
HRCT = High resolution computerized scan
Hyper- = A prefix that means increase of, e.g. hypervascularity means increased vessels
Hypo- = A prefix that means decrease of, e.g. hypovascularity means decreased vessels
IC = Inspiratory capacity
ICS = Inhaled corticosteroid/inhaled corticosteroids
I-κB = Inhibitor of κB
IL = Interleukin
LABA = Long-acting beta-adrenergic agonist
LoA = Limits of agreement
LP = lamina propria
MAPK = Mitogen-activated protein kinase
mg = milligram
mm = millimeter
MMP = Matrix metalloproteinase
mRNA = Messenger ribonucleic acid
NF-κB = Nuclear factory-kappa B
NO = Nitric oxide
PCR = Polymerase chain reaction
PEF = peak expiratory flow
Percent vascularity = Area of vessels/area of the lamina propria examined
Pi = Protease inhibitor = Alpha1-antitrypsine
PI3K = Phosphoinositide 3 kinases
PMN = Polymorphonuclear leukocyte
Rbm = Reticular basement membrane
RNA = Ribonucleic acid
ROS = Reactive oxygen species
S-COPD = Current smoker COPD
SD = Standard deviation
SE = Standard Error
SFC = Salmeterol + fluticasone propionate
SGRQ = St George’s Respiratory Questionnaire
S-N = Smokers with normal lung function
SNP = Single nucleotide polymorphism
TGF-β = Transforming growth factor-beta
TIMP = Tissue inhibitor of metalloproteinases
Vascular density = Number of vessels/ area of the lamina propria examined
%vascular area = Percent vascular area
VEGF = Vascular endothelial growth factor
VEGFR = Vascular endothelial growth factor receptor
VEGFR-1 = Flt-1, fms-like tyrosine kinase
VEGFR-2 = KDR/FLK-1, Kinase-insert domain receptor/fetal liver kinase
VEGFR-3 = Ftl4, fms-like tyrosine kinase 4

Symbols:
α = Alpha
β = Beta
γ = Gamma
μ = Micro
μm = Micrometer
ν = Nu
κ = Kappa
I = one
II = Two
III = Three
IV = Four
V = Five
VIII = Eight
FOR:
Parisa, Ehsan and Sara:
 - My love, family and life.
Table of Contents:

Chapter One... 1
Introduction, Preliminary Data and Resulting Aims and Hypotheses..................... 1
 Introduction: .. 1
 Background: ... 2
 Preliminary study: Characteristics of airway remodelling in COPD 4
 Hypotheses in the pilot study: ... 4
 Methods: .. 4
 Results and preliminary discussion: .. 17
 Preliminary study: Angiogenic factors in COPD .. 20
 Introduction: ... 20
 Research question: .. 20
 Material and methods: ... 20
 Results: .. 26
 Discussion: ... 28
 Longitudinal study: .. 31
Chapter Two .. 32
Literature Review and Background .. 32
 Chronic Obstructive Pulmonary Disease (COPD): .. 32
 Summary: .. 32
 1.a-Airflow limitation (airflow obstruction): .. 35
 1.b-Classification: ... 37
 2-Epidemiology: .. 37
 3-Aetiology: ... 38
 4-Pathology and Pathogenesis: ... 46
 4.a-Introduction: ... 46
 4.b-Anatomy: .. 48
 4.c-Emphysema: .. 51
 4.d-Airway disease: ... 55
 4.e-Small airways: .. 55
 4.f-Large airways: .. 55
 4.g-Airway remodelling: ... 56
 4.h-Airway vascularity and angiogenesis: .. 62
Chapter Six .. 242
Effects of Inhaled Corticosteroid Therapy on Airway Remodelling in COPD: A Longitudinal Study.. 242
Abstract: ... 242
Introduction: .. 244
Methods: ... 245
Results: ... 246
Discussion: .. 259
Chapter Seven.. 263
Summary and General Discussion.. 263
 1. Chapter One-Preliminary study: ... 263
 2. Chapter Two- Literature review-Themes: .. 265
 3. Chapter Three (General Methods)- Methods, subjects and tissue: 266
 4. Chapter Four (Methods Part 2)-Histochemical staining of vessels: 268
 5. Chapter Five- The cross-sectional study: ... 269
 6. Chapter Six- The longitudinal study: ... 271
 7. Final Summary and Conclusions: .. 273

References
Appendix: Examiners’ Comments