MOLECULAR VARIATION OF VIRUSES INFECTING HOPS IN AUSTRALIA AND ASSOCIATED STUDIES

By

Damian Raymund Crowle, B. App. Sci. (Hons)

Submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

University of Tasmania, Hobart, Australia

November, 2010
This thesis contains no material which has been accepted for a degree or diploma by the University or any other institution, except by way of background information and duly acknowledged in this thesis, and to the best of my knowledge and belief no material previously published or written by another person except where due acknowledgement is made in the text of this thesis, nor does this thesis contain any material that infringes copyright.

This thesis may be made available for loan and limited copying in accordance with the Copyright Act 1968.

Damian Crowle
University of Tasmania
Hobart, Tasmania
November, 2010
Abstract

The objectives of this study were to investigate the virus incidence and molecular variation of Apple mosaic virus (ApMV), Hop mosaic virus (HpMV) and Hop latent virus (HpLV) and to examine the Hop latent viroid (HLVd) infection status of Australian hop varieties.

HLVd was found to be ubiquitous in all hop gardens surveyed. This was the first survey of HLVd in Australia. This confirms findings in the Czech Republic where infection was also found to be ubiquitous, while viroid status in other countries also indicates high levels of infection.

A virus survey, primarily to collect viruses for use in molecular analysis, was conducted. The percentage of infected plants detected in this study correlates with those previously undertaken by Pethybridge et al., 2000b. Cultivar ‘Victoria’ had the greatest level of ilarvirus infections (61%) significantly more than ‘Super Pride’ (6%). Cultivar Opal had the greatest incidence of carlaviruses infections (38%) but this was not significantly different to other cultivars sampled. Hops from the farm at Bushy Park recorded the highest incidences of ilarvirus infection (44%) although this was not significantly different to the other sampled farms. However, hops sampled from the Gunns Plains farm showed significantly more carlaviruses infections (40%) than the other three sampled farms.

Experiments testing transmission capacity of local aphid species (Macrosiphum euphorbiae and Myzus persicae) of the carlaviruses HpMV and HpLV was performed. It was found that both aphid species transmitted both carlaviruses, this being the first study to demonstrate transmission of Hpv by an aphid other than
the hop aphid, *Phorodon humuli*. This study also showed that prior infection by either virus did not significantly affect subsequent the efficiency of transmission of the other which may have explained observations of greater than expected co-infection of both carlaviruses within the field.

It was known that two serologically distinct ilarvirus strains infect hop. Prior literature indicated that these were strains of *Prunus necrotic ringspot virus* (PNRSV) designated –intermediate (PNRSV-I) type and PNRSV-A (apple serotype). This study undertook molecular analysis of hop-infecting ilarviruses to clarify strain diversity and taxonomic relationships. Analyses showed Australian hops are infected with two distinct strains of ApMV (and not PNRSV) these being distinct to ApMV strain commonly found in Apple. It was proposed that hop infecting strains of ilarvirus be termed ApMV-Hop (the former PNRSV-apple serotype) and ApMV-Intermediate (the former PNRSV intermediate serotype). PCR based assays were developed that could be used to distinguish the two strain types.

Suggestions of strains of HpMV had been described due to lethal and non-lethal response following infection in ‘English Golding’ hops. Molecular analysis of HpMV from Australian hop gardens indicated that there were at least two distinct clades of HpMV present with approximately 80% homology. Further work conducted at the conclusion of this study identified a possible third clade of HpMV. All HpLV isolates that were sequenced in this study had a high degree of identity. This was supported by recent publication of several further sequences on GenBank that also show this high degree of identity.
Statement of co-authorship and publications

Several of the chapters in this work have been published as scientific manuscripts. Unless stated as a percentage, experimental design, field and laboratory work, data analysis and interpretation, and manuscript preparation were the primary responsibility of the candidate. However, they were carried out with the supervision of the co-authors. These publications are presented in Chapter 8 – Appendix 4.

In Chapter 3, Shirofugen cherry virus indexing was conducted by Dr Michael Barkley, New South Wales Department of Agriculture, Camden, New South Wales, Australia.

Poke FS, Crowle DR (10%), Whittock SP, Wilson CR (2010) Molecular variation of \textit{Hop mosaic virus} isolates. \textit{Archives of Virology}. Online publication prior to printing, 2 August, 2010. \url{http://dx.doi.org/10.1007/s00705-010-0780-3}
Acknowledgements

I am heartily thankful to my supervisor, Calum Wilson, whose encouragement, guidance, support (and patience) from the beginning of my research through a new millennium and four football world cups to final submission.

I would like to acknowledge the support from many other people during my research. Special thanks to Sarah Pethybridge, Peter Cross and Carl Grosser for technical expertise, as well as Grey Legget and Leanne Sherriff from Australian Hop Marketers (now Hop Products Australia). I would like to thank for their assistance and encouragement received, my friends and colleagues not mentioned above from the University of Tasmania, Department of Primary Industry laboratories in New Town and La Trobe University, Bendigo.

I would like to thank the Australian Research Council and Hop Products Australia for funding this research.

I would like to thank my family, especially my mother, for constant interest and support in my education.

I would mostly like to dedicate this work to my wife Janene for her love and patience in a decade long endeavour, for giving me the opportunity to absent myself from her while working on my doctorate and for constant encouragement and support.
Table of Contents

MOLECULAR VARIATION OF VIRUSES INFECTING HOPS IN AUSTRALIA AND ASSOCIATED STUDIES ... 1

Abstract .. 3

Statement of co-authorship and publications ... 5

Acknowledgements .. 6

Table of Contents .. 7

Chapter 1 ... 10

Literature Review .. 10

1.1. Hops .. 10

1.2. Viruses .. 12

1.3. Viroids .. 24

1.4. Virus incidence in Australian hops ... 25

1.5. Effects of virus infection .. 25

1.6. Virus detection techniques ... 28

1.7 Study objectives ... 35

Chapter 2 ... 36

Viruses and Viroid Survey ... 36

2.1. Introduction .. 36
2.2. Materials and Methods...39

2.3 Results ..44

2.4. Discussion ...48

Chapter 3 ..51

Molecular studies of Ilarvirus coat protein gene sequences51

3.1. Introduction..51

3.2. Materials and methods ...54

3.3. Results ..58

3.4. Discussion ...67

Chapter 4 ..71

Molecular Variation of Carlaviruses ..71

4.1. Introduction..71

4.2. Materials and Methods ...76

4.3. Results ..85

4.4 Discussion ...96

Chapter 5 ..104

Transmission of Hop Latent and Hop Mosaic Carlaviruses by aphid species
Macrosiphum euphorbiae and Myzus persicae..104

5.1. Introduction..104
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2. Materials and Methods</td>
<td>106</td>
</tr>
<tr>
<td>5.3. Results</td>
<td>109</td>
</tr>
<tr>
<td>Acquisition sources</td>
<td>110</td>
</tr>
<tr>
<td>5.4. Discussion</td>
<td>111</td>
</tr>
<tr>
<td>Chapter 6</td>
<td>114</td>
</tr>
<tr>
<td>Chapter 7</td>
<td>119</td>
</tr>
<tr>
<td>References</td>
<td>119</td>
</tr>
<tr>
<td>Chapter 8</td>
<td>132</td>
</tr>
<tr>
<td>Appendices</td>
<td>132</td>
</tr>
<tr>
<td>Appendix 1</td>
<td>132</td>
</tr>
<tr>
<td>Appendix 2</td>
<td>134</td>
</tr>
<tr>
<td>Appendix 3</td>
<td>138</td>
</tr>
<tr>
<td>Appendix 4</td>
<td>140</td>
</tr>
</tbody>
</table>