The impacts of brown trout (*Salmo trutta*) in streams: the implications of prey identity and habitat

By

William F. Elvey, B.Sc., Hons.

A thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

University of Tasmania

February, 2002.
Declaration

This thesis contains no material which has been accepted for a degree or diploma by the University or any other institution, except by way of background information which is duly acknowledged in the text. To the best of my knowledge this thesis contains no material previously published or written by another person, except where due acknowledgment is made in the text.

Access to this thesis

The thesis copy held in the University library shall be made available for loan and limited copy in accordance with the Copyright Act 1968.

[Signature]
Abstract

Europeans introduced brown trout (*Salmo trutta* L.) into Australia in the 1800’s and they are now widespread in the lentic and lotic systems of temperate south-eastern Australia. The literature on salmonids in the streams of other continents provides examples of both weak and strong impacts on the density of stream invertebrates. In Australia, we know little of the impacts that brown trout have on the native invertebrate fauna of freshwater habitats. This thesis aimed to determine the top-down effects of trout predation in small to medium sized headwater streams in Tasmania. My overall hypothesis was that the effects of predatory trout should be spatially heterogeneous in headwater streams, where physical and biological conditions are often variable over small spatial scales.

Initially, I used a survey of five upland forest streams containing brown trout and five nearby highly similar streams that are naturally fishless to address how the top-down impacts of trout are affected by: 1) the identity and behaviour of different invertebrate taxa; 2) inter-reach variation in substrate and flow conditions; 3) and how variation in shading affects the occurrence of trophic cascades. Finally, I conducted an experiment using bank side stream channels that mimicked depositional habitats to test whether the top-down effects of brown trout can induce a trophic cascade in depositional habitats, and whether any trophic cascades are limited to high light environments.

For the surveys, trout had the strongest impacts on mayflies, particularly baetids, which were up to five fold less numerous in the presence of trout. Mayflies were probably vulnerable to trout as they are numerous in the study streams, large bodied, feed on the exposed surface of stones and frequently enter the drift. However, the effects of trout were more marked on the behaviour of invertebrates with five taxa that showed no density effects exhibiting reduced daytime drifting in the presence of trout.

The impacts of trout varied across the stream reach; for example, the density of baetid mayflies were reduced in glide but not riffle or pool habitats in the presence of trout. In contrast, leptophlebiid mayflies and gripopterygid stoneflies were reduced in trout...
streams in all habitats, although the effects were stronger on the epi-benthic density of these invertebrates.

I argue that patch-to-patch variation in flow and substrate conditions affect the vulnerability of invertebrates to trout with the strongest impacts under conditions of least complexity. For example, baetid mayflies might be particularly vulnerable in glides because trout are more numerous in glides and can more easily detect baetids in the drift under smooth, low complex flow than they can in the rough, complex flow of riffles. Moreover, within discrete habitats, the effects of trout may be strongest on invertebrates that occupy the structurally simple epibenthic surfaces of cobbles and boulders.

The top-down effects of trout on invertebrates and algae were also affected by shading. For example, algal biomass was higher in trout than fishless streams even under heavy shade; however, the size of the trophic cascade under light shading was over two-fold that observed under heavy shading. Differences between trout and fishless streams in the epibenthic density of baetids were also affected by shading with similar densities under heavy shading, but with 2.1 and 2.8 (respectively) fold higher density of baetids under medium and light shading in fishless than trout streams. Thus, the effects of variation in shading on the growth of algae and on the behaviour of mobile grazers may alter the perceived effects of trout across small spatial scales.

The surveys and artificial stream experiment also indicated weak effects of trout on the fauna of depositional habitats, which may be attributed to a high density of small, cryptic detritivorous invertebrates, such as *Riethia* chironomids, and a low density of mayflies. In the artificial streams, trout did not produce a dramatic top-down cascade, nor did shading influence the effects of trout on algal biomass. I suggest that abundant detritus dampened both the effects of trout and variation in shading by reducing the direct importance of algae to browsers, promoting a fauna whose key members were less vulnerable to predation, and by restricting light supply to benthic algae.
Acknowledgments

I would like to thank my supervisors Dr Peter E. Davies and Dr Leon Barmuta for their advice on the planning and execution of this project; their encouragement and constructive criticism were invaluable and much appreciated.

I would like to thank the Land and Water Resources Research and Development Corporation for financial assistance in the form of a Postgraduate Research Scholarship.

I would also like to thank the people who provided assistance as volunteers in the field: Danielle Warfe, Laurie Cook, Adam Utendyall, Meredith Oldmeadow, John St Hill, Tony van den Enden, Jean Jackson, Mike Dreissen, Rebecca Pinto, Colin Shepherd, Paul Reich, Niall Doran, Richard Cobham, and Derek Turnbull. I must also thank Meredith for teaching me about Zola Pops and for lending Larry to me, on whom I relied ceaselessly in the final six months.

Thanks also to the technical staff in the Zoology Department, especially to Richard Holmes for knocking equipment together at short notice, and to Nurse Rumbold simply for being himself.

To Barry and Jenny for providing accommodation and support during my work in the field and to Lyn and Keith Mobbs for allowing me to use their property on Judds Creek.

Finally, I would like to thank my parents for providing shelter, food and emotional support during the concluding phase of this thesis. I cannot thank them enough.
Table of Contents

Chapter 1. General Introduction .. 1
 Introduction .. 1
 Rationale of research plan .. 4
 Project aims and research strategy .. 6
 Prey identity ... 6
 Instream habitat .. 6
 Riparian shading .. 7

Chapter 2. General Methods ... 8
 Introduction .. 8
 Description of study sites used in the surveys 8
 Physical and chemical characteristics 9
 Fish surveys .. 11
 Invertebrate sampling for glides and riffles 12
 Ranking scheme for invertebrate vulnerability to trout 14

Chapter 3. Top down interactions in streams: effects of brown trout on
 benthic density, epibenthic positioning and drift behaviour of stream
 invertebrates .. 21
 Introduction .. 21
 Methods .. 23
 Data analysis ... 24
 Results .. 26
 Benthic community .. 26
 Benthic densities and positioning during daylight 26
 Diel changes in positioning ... 27
 Drift .. 27
 Diurnal patterns .. 28
 Discussion .. 29
 Behavioural responses ... 29
 Density effects .. 31
Chapter 4. Top down effects of brown trout at the reach scale: contrasting effects in glide, riffles and pools

Introduction ... 43
Methods ... 45
Data analysis ... 45
Results ... 46
Glide and Riffles .. 46
Pools ... 48
Discussion ... 48
Conclusions ... 53

Chapter 5. Top-down interactions in streams: Does shading affect the impacts of brown trout on benthic stream communities?

Introduction ... 60
Methods ... 62
Data analysis ... 63
Results ... 63
Epifauna/infauna patterns .. 63
Positioning behaviour ... 63
Density patterns .. 64
Algal biomass ... 65
Discussion ... 65
Conclusions ... 69

Chapter 6. Effects of trout predation and light supply on invertebrate communities and algal biomass in depositional habitats

Introduction ... 75
Methods ... 78
Experimental Design .. 78
Algal sampling ... 79
Faunal sampling .. 80
Dietary analyses .. 80
Appendix A. Subcategory vulnerability scores for individual taxon for the stream survey described in Chapter 3.

Appendix B. Percentage that the benthic density of common taxa form the total density of benthic invertebrates in the survey streams over four separate sampling periods.

Appendix C. Subcategory vulnerability scores for individual taxon from the artificial stream experiment (Chapter 6).