THE GEOLOGY AND GENESIS OF THE CHLORITE-CARBONATE ALTERATION IN THE FOOTWALL OF THE HELLYER VOLCANIC-HOSTED MASSIVE SULPHIDE (VHMS) DEPOSIT

Alison Bradley, B.Sc.

A research thesis submitted in partial fulfilment of the requirements of the degree of Bachelor of Science with Honours

Centre for Ore Deposit Research, Geology Department, University of Tasmania.

ABSTRACT

The chlorite-carbonate alteration assemblage is an unusual feature in the footwall of the Hellyer volcanic-hosted massive sulphide deposit, Tasmania. Carbonate alteration is common to many VHMS deposits however its origin and characteristics has been rarely studied in detail.

Chlorite-carbonate alteration is defined as texturally diverse dolomite in a matrix of fine-grained chlorite. This distinctive alteration is found at the top of the chlorite-alteration zone around the central and northern hydrothermal discharge sites beneath the deposit. On the ore contact ('contact zone'), the chlorite-carbonate assemblage occurs as thin discontinuous lenses. A lower stratiform chlorite-carbonate alteration zone ('lower zone') occurs approximately 40 metres below the contact zone, is more laterally continuous and only occurs on the west side of the east flank of the ore deposit. Carbonate alteration is associated with sericite, chlorite and quartz in the contact zone but is primarily associated with chlorite in the lower zone. Carbonate-chlorite assemblages have not been observed at greater depths in the footwall alteration pipe, or distal to the deposit.

The carbonate mineralogy is Fe-dolomite or dolomite. Carbonate textures consist of large and small spheroids, rhombs, massive carbonate and veinlets. These textures appear to be associated with the initial porosity and permeability of the host rock. The various carbonate textures formed synchronously and have no textural zonation within the contact and lower alteration zones.

Whole-rock geochemical studies indicate major gains in Ca, Mg, and Fe and losses in Si and Na in the chlorite-carbonate alteration compared to the unaltered footwall andesite. An absolute mass-gain of 18g/100g is achieved when converting an andesite to a chlorite-carbonate altered rock.

Carbon isotopes (δ13C) range between +0.31 and +2.8‰ and oxygen isotopes (δ18O) range from +10.29 to +18.29‰. Isotope studies indicate that the dolomites formed from upwelling hydrothermal fluid (modified seawater with a minor magmatic input) in the lower zone or from the mixing of the hydrothermal fluid with infiltrating seawater in the contact zone. Carbon isotopic values are uncharacteristically high at Hellyer compared with other VHMS deposits and could indicate deep-seated contributions of δ13C.

From distribution and textural evidence, it is proposed that the dolomite alteration formed by direct precipitation within chloritised volcaniclastic units near the seafloor or in shallow sub-seafloor units in the mixing zone between upwelling hydrothermal fluids and infiltrating seawater. As the hydrothermal fluid mixed with infiltrating seawater a pH increase counteracted the affects of cooling and caused dolomite to precipitate.
I would like to thank Aberfoyle Resources Limited for their logistical support for this project. In particular, I would like to thank Dr. Gary McArthur who was helpful and supportive during the year; Chris Davies for producing some of my plans and Steve Richardson. I would also like to thank the Tasmanian Government for providing me with a scholarship which helped me complete this year.

I would also like to thank my supervisors Dr. Bruce Gemmell and Prof. Ross Large. Bruce has been of great support and offered endless advice and encouragement during the year.

I would like to extend my thanks to Karin Orth, Walter Herrman, Paul Kitto, Dr. Khin Zaw, Dr. David Cooke and Dr. Garry Davidson for their help during the year.

Thanks to fellow honours students for their friendship and memorable entertainment over the year (it has definitely been an interesting one!).

Finally, huge thanks go to my parents Tony and Carol and great friends Karin and Julianne who have heard out my many stressed phone-calls and have never ceased to provide enormous encouragement and support.
Table of Contents

Abstract .. i
Acknowledgments .. ii
Table of contents .. iii
List of Figures ... vi i
List of Plates .. viii
List of Tables .. ix

Chapter 1: Introduction ... 1
1.1 Research Aims ... 1
1.2 Outline of the Research Project ... 1
1.3 Previous Research .. 2

Chapter 2: Regional and Local Geology ... 4
2.1 The Regional Geological Setting ... 4
2.1.1 The Que-Hellyer Volcanics ... 5
2.2 The Local Geological Setting ... 6
2.2.1 Stratigraphy .. 6
2.2.2 Structure .. 7
2.2.3 The Footwall Alteration Zone .. 8
2.2.4 Mineralisation and Dimensions ... 9
2.3 Genesis of the Ore Deposit .. 10

Chapter 3: Spatial Distribution of the Chlorite-Carbonate Alteration Zone
3.1 Introduction ... 11
3.2 Lateral Distribution ... 11
3.3 Vertical Distribution ... 15
3.4 Contacts with the massive sulphide ... 15
3.5 Summary .. 22

Chapter 4: Mineralogy, Textures and Paragenesis
4.1 Introduction ... 23
4.1.1 Methods .. 23
4.2 Mineralogy .. 25
4.3 Carbonate textures .. 25
4.3.1 Large spheroids ... 27
4.3.2 Small spheroids ... 29
4.3.3 Rhombs .. 30
4.3.4 Massive carbonate ... 32
4.3.5 Veinlets .. 32
4.3.6 Devonian calcite veins .. 32
4.4 Paragenesis of the carbonate ... 34
4.4.1 Results .. 34
4.4.2 Metamorphic features ... 34
4.4.3 Textural and mineral paragenesis ... 34
4.5 Textural distribution ... 37
4.6 Interpretation ... 44
4.7 Summary .. 44
Chapter 5: Whole-rock Geochemistry
5.1 Introduction ... 45
5.2 XRF preparation and analytical techniques 45
5.3 Whole-rock geochemistry of the chlorite-carbonate alteration zone .. 46
 5.3.1 Methods .. 46
 5.3.2 Data ... 47
5.4 Alteration Indices .. 48
 5.4.1 Results ... 48
 5.4.1.1 Spatial Distribution .. 50
5.5 Mass change analysis of altered volcanics 50
 5.5.1 Establishing a precursor, calculating mass change 50
 5.5.2 Mass gains and losses .. 52
5.6 Comparison with other alteration zones 53
5.7 Discussion ... 56
 5.7.1 Summary and interpretation 56
Chapter 6: Carbon and oxygen isotope studies on the carbonates.
6.1 Introduction .. 57
6.2 Previous work .. 57
6.3 Methods ... 58
6.4 Results ... 58
 6.4.1 Oxygen and carbon isotopes 58
 6.4.2 Variation in $\delta^{18}O$ and $\delta^{13}C$ with textures 58
 6.4.3 Equilibrium isotopic fractionation 60
6.5 Composition of the hydrothermal fluids 63
6.6 Interpretation ... 65
6.7 Comparisons with other VHMS deposits 67
6.8 Conclusions .. 68
Chapter 7: Genesis of the chlorite carbonate alteration zone
7.1 Introduction .. 70
7.2 Controls on the distribution of the chlorite-carbonate alteration zone .. 70
7.3 Textural interpretations in the genesis of the chlorite-carbonate alteration zone .. 71
7.4 Geochemical controls .. 72
7.5 Carbon and oxygen stable isotopes 72
7.6 Conditions for the precipitation of the hydrothermal dolomites .. 73
 7.6.1 Previous work .. 73
 7.6.2 Physico-chemical conditions of carbonate deposition .. 73
7.6.2.1 Carbonate deposition in subaerial geothermal systems ... 74
7.6.3 Dolomite precipitation ... 76
7.6.4 Discussion .. 76
7.7 Model for the formation of the chlorite-carbonate alteration zone 77

Chapter 8: A comparative study of carbonate and chlorite-carbonate- carbonate alteration in other VHMS deposits ... 83
8.1 Introduction
8.2 Comparison of Hellyer to other VHMS deposits ... 86
8.2.1 Carbonate mineralogy .. 86
8.2.2 Textures ... 86
8.2.3 Distribution and occurrence of carbonate and chlorite-carbonate assemblages 87
8.2.4 Genetic Models ... 89
8.3 Comparison of chlorite-carbonate alteration at Hellyer with Que-River 90
8.3.1 Carbonate distribution and textures .. 90
8.4 Discussion and recommendations for future work ... 91

Chapter 9: Conclusions ... 94

References .. 96

Appendices

1.1 Example of a logging sheet
1.2 Drill holes logged and intervals

2.1 Thin section sample locations and descriptions
2.2 Example of a petrological interpretation sheet

3.1 Whole-rock XRF results
3.2 Unaltered andesite XRF analyses
3.3 Chlorite-carbonate XRF analyses (Gemmell, 1989)
3.4 Location, TiO2 and Zr data for the mixed dacitic sequence and Hellyer Basalt

4.1 δ13C and δ18O stable isotope sample locations for the stage 2A, 2B and 2C syn-mineralisation veins
4.2 δ13C and δ18O stable isotope sample locations and descriptions
5 Rock Catalogue