SYN-DEPOSITIONAL FAULT CONTROLS
ON THE HELLYER VOLCANIC-HOSTED
MASSIVE SULPHIDE DEPOSIT

Richard C. Downs B.AppSc.

A thesis submitted in partial fulfilment
of the requirements for the degree of
Master of Economic Geology

Geology Department
University of Tasmania
March 1993
This thesis contains no material which has been accepted for the award of any other higher degree or graduate diploma in any tertiary institution and, to the best of my knowledge and belief, the thesis contains no material previously published or written by another person, except when due reference is made in the text of the thesis.

Richard C. Downs
Abstract

Hellyer is a late-Middle Cambrian volcanic-hosted massive sulphide deposit, situated within the Mount Read Volcanics of western Tasmania.

The effects of post-depositional folding and wrench faulting have been removed from the deposit to produce an interpreted Cambrian seafloor topographic contour map. This map reveals that the massive sulphide orebody formed within a north-south striking, fault controlled basin. Intersections of active, syn-depositional faults appear to have channelled hydrothermal fluids, and hence, controlled the location of massive sulphide formation.

The most intense hydrothermal fluid flux was focussed on the intersection of three major structural elements:-

i) north-south striking basin bounding faults,

ii) a northeast striking fault, and

iii) a northwest striking ridge.

Metal-rich stringer veins within the footwall indicate that the orebody formed during the period of time when northeast striking faults were actively dilating due to northwest directed extension.

During the waning stages of the hydrothermal system, basaltic magma rose up through a similar set of fissures and erupted onto the seafloor, burying and preserving the deposit.
Acknowledgements

I would like to thank Aberfoyle Limited for the generous support given to me during the two years of this Masters degree. Particular thanks go to Gary McArthur (Chief Geologist, Hellyer) for his encouragement, intellectual stimulation and critical evaluation of this thesis and to Neil Ryan for his skilful and patient drafting.

Many of the ideas presented in this thesis developed from discussions with the following geologists: Gary McArthur, Chris Drown, Steve Richardson, Henry Kurth, Graham Howard, Bruce Gemmell, Ron Berry, John Waters, Mike Etheridge and Jacqui Windh.

Finally, special thanks go to my wife, Samantha, for her love, patience and encouragement during the preparation of this thesis.
Table of Contents

Chapter 1: Introduction .. 1
 1.1 Outline of Thesis ... 1

Chapter 2: Geology ... 5
 2.1 Regional Geology ... 5
 2.2 Tectonic Models for the Formation of the Mount Read Volcanics 7
 2.2.1 Geochemical Classification of the Mount Read Volcanics 8
 2.3 Deposit Geology ... 9
 2.4 Previous Studies ... 13

Chapter 3: Post-Cambrian Deformation 16
 3.1 Brittle Faults ... 16
 3.2 Devonian Deformation ... 16
 3.2.1 Strain During the Devonian Deformation 17
 3.2.2 Brittle-Ductile Shear Zones 21

Chapter 4: Cambrian Structures 27
 4.1 Footwall Stringer Veins ... 27
 4.2 Basalt Dykes ... 29
 4.3 Cambrian Age Faults .. 31

Chapter 5: Removal of Post-Depositional Deformation 35
 5.1 Assumptions .. 35
 5.2 Technique .. 36

Chapter 6: Cambrian Seafloor Architecture 46
 6.1 The Cambrian Seafloor ... 46
 6.2 The Jack Fault .. 48
 6.3 Hydrothermal Feeder Zones ... 48
 6.4 East-West Faults .. 50
 6.5 Basalt Dykes .. 50

Chapter 7: Interpretation of Syn-Depositional Fault Pattern .. 52
 7.1 The Northwest Ridge .. 54

Chapter 8: Conclusion .. 58

References ... 60

Appendices ... 63
 A: Orientations of Cambrian Veins and Dykes
 B: Calculation of Devonian Stress Directions