SEDIMENTOLOGY, VOLCANOLOGY AND GEODYNAMICS OF THE REDBANK PACKAGE, McARTHUR BASIN, NORTHERN AUSTRALIA.

DAVID J RAWLINGS
BSc (hons). (Wollongong)

Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

Hobart, Australia
January, 2002

UNIVERSITY OF TASMANIA
Declaration

This Thesis contains no material which has been accepted for the award of any other degree or diploma in any tertiary institution and, to the best of my knowledge and belief, contains no copy or paraphrase of material previously published or written by another person, except where due reference is made in the text of the Thesis.

David Rawlings
January, 2002

This thesis may be made available for loan. Copying of any part of this thesis is in accordance with the Copyright Act 1969

David J Rawlings
Date: 29/1/2002
Abstract

The \(\text{-}1815-1705 \text{ Ma Redbank package} \) is a 3-6 km thick succession of shallow marine to braided fluvial sandstone and lesser conglomerate, mudstone, carbonates and rhyolitic-basaltic volcanics and high-level intrusions. It forms the base of the Palaeoproterozoic McArthur Basin in northern Australia.

In the southern McArthur Basin, the Tawallah Group is the best exposed stratigraphic component of this package. Coarse-grained facies at the base of the Group formed in a proximal-medial braided fluvial environment and are overlain by widespread sheets of supermature quartzarenite and intervening flood basalt. These enigmatic sandstone sheets contain features consistent with deposition in a complex high-energy shallow marine, fluvial and aeolian setting on an extensive low-gradient shelf. Overlying mudstones and carbonates were deposited on a shallow epeiric shelf and coastal sabkha fringe that onlapped basement tectonic ridges. A regional sequence boundary formed during subsequent regional uplift and local synsedimentary deformation, and was followed by deposition of another widespread quartzarenite sheet. The overlying succession of fine-grained sandstone, mudstone, carbonate and evaporitic redbeds suggest more diverse depositional settings. Marginal marine salina, near-shore peritidal, storm-dominated shelf and moderately deep water settings, with periodic restriction to the marine realm, fluctuating accommodation rates and minor synsedimentary faulting are all recorded.

Regional-scale dolerite sills and an extensive stacked succession of basalt sheets were emplaced sequentially as widely-dispersed invasive flows under a thin blanket of wet unconsolidated sediment and peperite. Volcanism was locally associated with uplift and emplacement of polymict debris flows and breccia bodies. This was followed by deposition of a complex association of clastic sediments and felsic volcanics and intrusion of high-level plutons (upper Tawallah Group). Sheet-like rhyolitic lavas with abrupt talus-lined margins evolved via non-explosive eruption and long-term viscous flow. This was facilitated by low water content and high and continuous eruption temperature and effusion rate. Complex ephemeral alluvial and debris flow aprons formed adjacent to the lavas, recording the generation, erosional denudation and final burial of a dynamic high-relief volcano-tectonic landscape. Epiclastic materials were reworked in bordering lakes and low-relief braidplains that prograded radially away from the volcanic centres. Periods between magmatic events were characterised by deposition of widespread immature sandstone sheets in extensive high-energy ephemeral to perennial braided fluvial settings and the development of low-relief regional disconformities. Concurrent pluton emplacement in the northern McArthur Basin generated a series of structural domes with peripheral deformation. Accommodation space for intrusion was provided by decollement at ductility transitions, upward flexuring, outward gravity slide and vertical displacement of overlying sediments.
Detailed stratigraphic and facies analysis of the Tawallah Group has enabled the development of a tectonostratigraphic framework for the entire Redbank package. Four second order subdivisions are recognised (Yirrumanja, Liverpool, Costello and Mitchell mesopackages) that facilitate a clearer, integrated regional understanding of the lithology, timing and geographic distribution of basin phases. The package concept is also applied to the composite McArthur Basin system as a whole. Five distinct and regionally coherent basin phases are recognised (Redbank, Goyder, Glyde, Favenc and Wilton packages). These were deposited in a dynamic tectonic environment over a period of ~350 m.y.

Geochemical characterisation of Proterozoic igneous phases in northern Australia has confirmed many lithostratigraphic correlations in the McArthur Basin. Felsic units show temporal and spatial variation in geochemistry that reflects partial melting of heterogeneous Archaean mafic lower crust due to the emplacement of large basaltic magma chambers and radiogenic heating. The McArthur Basin contains five main mafic igneous phases with typical flood basalt attributes, spanning a period of ~480 m.y. Magmas were derived by partial melting of chemically-stratified lower lithosphere and do not exhibit a plume or rift signature.

A convergent intracratonic setting is proposed for the Redbank package. Basin architecture reflects diverse subsidence mechanisms operating inboard of the active southern margin of the North Australian Craton (Strangways arc). Wedge-shaped and magmatic-related basin architectures formed during subduction. Subsidence was influenced by dynamic topography, thermally- and mechanically-driven viscoelastic behaviour of heterogeneous crust, magmatic underplating, lithospheric phase transformations, and local transtension and isostatic loading. Local growth-fault architecture formed by incipient back-arc extension. Magmatism was driven by a persistent thermal anomaly related to insulative heating and a transient convective roll emanating from the Strangways arc, that eroded the lower lithosphere and generated a magma pool. Migration of magma into lower-crustal magma chambers and to the surface took place at transtensional sites along lithosphere-scale strike-slip faults. Regional unconformities and elongate and wedge basin architectures formed in the Redbank package during periodic terrane accretion events at the Strangways arc. Subsidence was influenced largely by transmission of in-plane stress through the lithosphere to produce lithosphere-scale folding, viscoelastic deflections of the lithosphere, and transtensional strike-slip and flexural back-bulge basins. Local elongate magmatic grabens are interpreted as impactogens resulting from indentor tectonics.
Acknowledgements

This thesis has benefited from the input of many people. In particular, I am indebted to my supervisors, Stuart Bull and David Cooke, for their valuable contributions into the evolving direction of the project, and their friendship. I would also like to extend my gratitude to many of the staff at the School of Earth Sciences and CODES, notably: Clive Burrett, Ross Large, Peter Haines, Paul Kitto, Tony Crawford, Ron Berry, Marc Norman, Sebastian Meffre, Garry Davidson, Jan van Moort, Mike Roach, Mike Solomon, Wally Herrman, Mike Blake Dave Selley and Robina Sharpe. June Pongratz deserves a special mention for her undivided attention with many problems, in her patient and tireless pursuit of excellence. Peter Cornish, Mike Harlow, Simon Stephens, Chris Higgins, Katie McGoldrick, Nilar Hlaing, Marilyn Feast, Jess Tyler, Moya Kilpatrick, Kathi Stait, Di Steffens and Lyn Starr have also provided endless help with various problems over the years.

I was fortunate to have been involved in a number of collaborative projects and am grateful for the input of many researchers, including Jim Jackson, Rod Page, Mike Watkeys, Barry Pietsch, Albert Brakel, Mart Idnurm, Ian Sweet, Peter Beier, Masood Ahmad, Dennis Gee, Jamie Burgess, Carsten Muenker, Leesa Carson, E.J. Hill and Ken Plumb. Deb Scott is especially thanked for the contribution of her considerable knowledge and enthusiasm. Interaction with various professional and technical staff of CRAE has also been valuable, including Doug Menzies, Doug Morris, John Roiko, Bruce Harvey, Steve Hulton, Jeff Wilkie, Gerrard Reinberger, Warren Moon, Tony Politis, ‘Johno’ Francis and Roger the mad cook. Rio Tinto and the ARC are acknowledged for substantial logistical and financial support of the project (APA scholarship). Thanks also to the NTGS for in-kind support and granting the leave necessary to complete the project. Niels Nielsen, Dave Harris, Tim Cardona and Dave Campbell provided field support at various times. Fieldwork in the ‘Gulf country’ was made considerably easier by the kindness of many pastoralists, in particular: Paul Slotkovski, John Mora, Doug & Fran Tanzer, Jim & Rosie Pott, Roy Dixon, Sissy Bright, Willie Shadforth and the Darcy family. The hospitality of Tony & Val Inwood at Redbank was greatly appreciated.

My time at university was enhanced by the people I spent time with. My room-mates, Peter ‘Wino’ Winefield, John Dunster, Phisit ‘Meng’ Limtrakum, Holger ‘Fatty’ Paulick and Tony Webster were especially tolerant whilst providing excellent advice on widespread matters, both geological and unrelated. Other comrades include Rohan ‘Chap’ Wolfe, Matt White, Jamie Rogers, Andrew Tunks, Steve Hunns, Mark Duffett, Bruce Anderson, Owen Hatton, Karin Orth, Darryl Clark, Ali Raos, Tania Eaton, Rick Squire, Dean Carroll, Fernando De La Pasqua, Cathryn Gifkins, Ian Hart and Sandra Williamson. Catherine Reid is especially thanked for holding the fort during the last few months of writing up. June Cashion provided accommodation and tireless assistance while I was living in Tasmania. Lastly, I would like to extend my wholehearted thanks to my parents for their never-ending support of my academic pursuits. May this be the last.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE PAGE</td>
<td>i</td>
</tr>
<tr>
<td>STATEMENT</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF PLATES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xv</td>
</tr>
</tbody>
</table>

1. INTRODUCTION
1.1 Introduction 1
1.2 Location, climate and physiography 1
1.3 Previous work and concurrent studies 3
1.4 Scope of research 7
1.5 Methodology 7
1.6 Thesis organisation 8

2. REGIONAL SETTING
2.1 Introduction 10
2.2 Tectonic framework of Australia 10
2.3 Geology of the North Australian Craton 15
2.4 Basement terranes of the McArthur Basin 18
 2.4.1 Pine Creek Inlier 18
 2.4.2 Arnhem Inlier 18
 2.4.3 Murphy Inlier 20
 2.4.4 Other inliers 20
2.5 McArthur Basin 20
 2.5.1 Tectonic framework 21
 2.5.2 Lithostratigraphy 24
 2.5.3 Tectonic setting 30
2.6 Cover sequences 30
2.7 Summary 31

3. LOWER TAWALLAH GROUP
3.1 Introduction 32
3.2 Lithostratigraphy 32
 3.2.1 Westmoreland Conglomerate 32
 3.2.2 Yiyintyi Sandstone 36
 3.2.3 Seigal Volcanics 38
 3.2.4 Sly Creek Sandstone 45
 3.2.5 Rosie Creek Sandstone Member 48
 3.2.6 McDermott Formation 50
 3.2.7 Wununmantyala Sandstone 55
 3.2.8 Aquarium Formation and Wuraliwuntya Member 63
 3.2.9 Settlement Creek Volcanics 69
3.3 Quartzarenite depositional model 79
 3.3.1 Epeiric platform 81
3.4 Depositional-volcanological model 84
3.5 Key outcomes 86
7. JIMBU MICROGRANITE ... 253
 7.1 Introduction ... 253
 7.2 Geology and structure .. 253
 7.3 Timing and depth of granite emplacement 265
 7.4 Relationships between plutonism, volcanism and sedimentation 267
 7.5 Timing of dome formation ... 267
 7.6 Background on experimental models 268
 7.7 Application of the experimental models to the Mount Marumba area 271
 7.8 Discussion ... 273
 7.9 Regional geological considerations 274
 7.10 Metallogenic implications ... 275
 7.11 Summary ... 276

8. TECTONOOSTRATIGRAPHIC FRAMEWORK FOR THE MCArtHUR BASIn 277
 8.1 Introduction ... 277
 8.2 Preamble ... 277
 8.3 Terminology and rationale ... 278
 8.3.1 Packages ... 280
 8.4 Subdivision of the McArthur Basin 281
 8.5 Redbank package .. 285
 8.5.1 Lithostratigraphic components 288
 8.5.2 Higher-order tectonostratigraphy 301
 8.6 Upper McArthur Basin succession 308
 8.6.1 Goyder package .. 309
 8.6.2 Glyde package ... 310
 8.6.3 Favenc package ... 311
 8.6.4 Wilton package .. 312
 8.7 Summary ... 313

9. GEOCHEMISTRY AND PETROGENESIS OF IGNEOUS UNITS 314
 9.1 Introduction ... 314
 9.2 Felsic units ... 315
 9.2.1 Transitional phase 1 ... 318
 9.2.2 Transitional phase 2 ... 318
 9.2.3 Fagan phase 1 .. 318
 9.2.4 Fagan phase 2 .. 318
 9.2.5 Fagan phase 3 .. 324
 9.2.6 McArthur phase 1 .. 324
 9.2.7 Temporal trends .. 324
 9.2.8 Petrogenesis .. 327
 9.3 Mafic units ... 328
 9.3.1 Tawallah phase 1 & 2 ... 328
 9.3.2 Fagan phase 1 .. 336
 9.3.3 Fagan phase 3 .. 338
 9.3.4 McArthur phase 2 .. 340
 9.3.5 Derim Derim Dolerite suite .. 340
 9.3.6 Antrim Plateau Volcanics .. 340
 9.3.7 Spidergrams ... 340
 9.3.8 Rare Earth Element (REE) spidergram 342
 9.3.9 Variation of Zr/TiO2 with depth of emplacement 342
 9.3.10 Calc-Alkaline attributes .. 343
 9.3.11 Mafic magma source ... 346
 9.4 Mechanisms for magmatic events 348
 9.4.2 Working model .. 352
 9.5 Summary ... 353

viIII
10. GEODYNAMICS OF THE REDBANK PACKAGE

10.1 Introduction .. 355
10.2 Preamble .. 355
10.3 Evolution of the North Australian Craton
 10.3.1 Palaeoproterozoic crust development 356
 10.3.2 Ensialic model ... 358
 10.3.3 Plate tectonic model ... 359
10.4 Tectonic models for the McArthur Basin
 10.4.1 The 'Plumb' model ... 362
 10.4.2 The 'Etheridge and Wall' model 363
 10.4.3 The 'Rogers' model ... 364
 10.4.4 The 'Leaman' model .. 364
10.5 Models for the formation of basins
 10.5.1 Extensinal basins (rifts) 365
 10.5.2 Highly extended terranes 368
 10.5.3 Intracratonic basins ... 368
 10.5.4 Foreland basins ... 371
 10.5.5 Transtensional wrench-related basins 372
 10.5.6 Far-field in-plane stress 372
 10.5.7 Sedimentary loading .. 373
10.6 Constraints on development of the Redbank package
 10.6.1 Active southern margin of the NAC 373
 10.6.2 Basement heterogeneity 377
 10.6.3 Mafic underplate .. 378
 10.6.4 Basin architecture ... 379
 10.6.5 Internal unconformities 386
 10.6.6 Basin duration & subsidence rate 387
 10.6.7 Magmatism & thermal regime 387
 10.6.8 Applicability of extensional models 388
 10.6.9 Constraints from other provinces 390
10.7 Geodynamic model for the Redbank package
 10.7.1 Geodynamics during subduction 390
 10.7.2 Geodynamics during collision 392
 10.7.3 Chronological evolution 393
10.8 Analogues .. 394
10.9 Plate tectonic implications .. 396
10.10 Summary .. 397

11. CONCLUSIONS .. 398
 11.1 Facies and event stratigraphy 398
 11.2 Tectonostratigraphy ... 400
 11.3 Igneous geochemistry .. 401
 11.4 Geodynamics .. 402
 11.5 Recommendations for future research 403

REFERENCES ... 405

VOLUME 2 - APPENDICES

Appendix 1 - Sample catalogue .. 440
Appendix 2 - Glossary, terminology and legend for sections & logs 451
Appendix 3 - Lower Tawallah Group 455
Appendix 4 - Wollogorang Formation 473
Appendix 5 - Gold Creek Volcanics 493
Appendix 6 - Upper Tawallah Group 521
Appendix 9 - Geochemistry .. 560
Appendix 10 - Supporting publications 575