Open Access Repository

Hemodynamic and metabolic actions of Adiponectin in muscle

Bussey, CT 2011 , 'Hemodynamic and metabolic actions of Adiponectin in muscle ', PhD thesis, University of Tasmania.

[img] PDF (Whole thesis)
Bussey.pdf | Download (2MB)
Available under University of Tasmania Standard License.


Insulin resistance is characterised by an impaired ability of insulin to stimulate glucose
uptake, especially into skeletal muscle. Insulin has hemodynamic actions, stimulating total
blood flow as well as increasing microvascular perfusion. This stimulation of microvascular
perfusion may account for up to half of insulin-mediated skeletal muscle glucose uptake and
is impaired in insulin resistant states. Adiponectin exhibits a number of actions similar to
insulin, including stimulation of glucose uptake in incubated muscle, and reduction of
glucose release from hepatocytes. Recent studies have shown that adiponectin is also able to
increase nitric oxide (NO) production by the endothelium and relax pre-constricted isolated
aortic rings, suggesting that adiponectin may act as a vasodilator. It was hypothesised that
adiponectin may have hemodynamic effects similar to insulin, which may be an important
aspect of its insulin-sensitising ability by regulating access of insulin and glucose to
myocytes. Therefore, there were three major aims of this thesis: i) to examine the acute
vascular actions of adiponectin in a simplified but intact vascular system, the pump-perfused
rat hindlimb; ii) to investigate whether acute adiponectin infusion alters hemodynamics or
glucose homeostasis in the presence and absence of insulin in anaesthetised rats; and iii) to
determine whether the vascular actions of adiponectin are altered in insulin resistance.
The initial aim of the present study was to produce high purity, physiologically active
recombinant adiponectin in sufficient quantity for use in perfused hindlimb and in vivo
experiments. Full-length murine adiponectin was expressed in E. coli and purified by affinity
chromatography. The adiponectin product was found to be present primarily as a trimer,
similar to that reported in previous studies.
The constant-flow pump-perfused rat hindlimb was used to evaluate the direct effects of
adiponectin on the skeletal muscle vasculature. A physiological concentration of adiponectin
(6.5μg.mL-1) alone had no observable vascular activity in this largely dilated system.
Adiponectin pre-treatment and co-infusion inhibited the increase in perfusion pressure and
associated metabolic stimulation caused by low-dose (1nM) endothelin-1 (ET-1), but not
vasoconstriction caused by either high-dose (20nM) ET-1 or 50nM norepinephrine. This
action of adiponectin was apparently independent of NO, suggesting a potential novel
mechanism of adiponectin action.
A high-fat fed rat model was used to determine whether the vascular actions of adiponectin
are retained in insulin resistance. The ability of adiponectin to inhibit ET-1-mediated
vasoconstriction was not apparent in animals fed a high-fat diet. However, the
vasoconstrictor response to ET-1 (1 or 3nM) itself was found to be reduced following highfat
feeding. The vasoconstrictor response was restored in the presence of the NO synthase
(NOS) inhibitor NG-nitro-L-arginine methyl ester, indicating increased NO bioavailability
during hindlimb perfusion in the insulin resistant rats. Use of a specific inhibitor of the
inducible NOS (iNOS) isoform demonstrated that this increased NO was derived from
induction of iNOS.
Systemic vascular and metabolic actions of adiponectin were then examined in anaesthetised
rats, alone and during a hyperinsulinemic euglycemic clamp. No differences were observed
between vehicle and adiponectin (24 or 96μ treated rats in macrovascular
parameters, microvascular perfusion or glucose metabolism. This finding was consistent
whether the rats were fed normal chow or a high-fat diet to induce insulin resistance.
This study has identified a novel vascular action of adiponectin to specifically oppose ET-1-
mediated vasoconstriction. This effect was not apparent in insulin resistance, possibly implicating loss of adiponectin activity in disease development. Additionally, the response to
exogenous ET-1 was reduced in high-fat fed rats, due to upregulation of iNOS. The altered
state of balance between ET-1 and NO in insulin resistance may have important implications
for endothelial dysfunction. Meanwhile, no effect of acute adiponectin infusion, either
hemodynamic or metabolic, was apparent in vivo. Whilst chronic hemodynamic actions of
adiponectin may play a role in insulin sensitivity, they do not appear to be a major aspect of
acute adiponectin action in vivo.

Item Type: Thesis - PhD
Authors/Creators:Bussey, CT
Keywords: diabetes, blood flow, vascular, muscle, insulin resistance
Additional Information:

Copyright 2011 the Author

Item Statistics: View statistics for this item

Actions (login required)

Item Control Page Item Control Page