INTEGRAL EQUATION THEORY APPLIED TO POLAR MOLECULAR FLUIDS

by

Kevin James Fraser, B.Sc. (Hons.), Dip. Ed.

A thesis submitted in fulfilment of the requirements for the degree of
Doctor of Philosophy
at the
University of Tasmania

Hobart
December, 1986
5. Access to, and copying of, thesis

The thesis copy lodged in the University Library shall be made available by the University for consultation but, for a period of two years after the thesis is lodged, it shall not be made available for loan or photocopying without the written consent of the author and in accordance with the laws of copyright.

After a thesis has been examined, the following authority will apply. Please complete your request, and sign below.

i) I agree/do not agree that the thesis may be made available for loan.

ii) I agree/do not agree that the thesis may be made available for photocopying.

I note that my consent is required only to cover the two-year period following approval of my thesis for the award of my degree. After this, access to the Library copy will be subject only to any general restrictions laid down in Library regulations.

Signed: [Signature] Date: 9/1/87

Lodged in Morris Miller Central Library: 10/1/98 from which date the two years embargo will apply.
To the best of my knowledge, this thesis contains no material previously published, except where due reference is given in the text.

[Signature]

26th Dec. '86
CONTENTS

ACKNOWLEDGEMENTS

ABSTRACT

CHAPTER 1 INTRODUCTION
1.1 The Liquid State 2
1.2 Integral Equation Theory 3
1.3 Research Objectives 6
1.4 References 7

CHAPTER 2 STATISTICAL MECHANICS OF MOLECULAR LIQUIDS 8
2.1 Partition and Distribution Functions in the Canonical Ensemble 9
2.2 The Site-Site Ornstein-Zernike Equation 13
2.3 The Percus-Yevick and Hypernetted Chain Approximations 16
2.4 Interaction Site Models with Coulombic Interactions 18
2.5 References 22

CHAPTER 3 NUMERICAL SOLUTION OF THE SSOZ EQUATION 23
3.1 Introduction 24
3.2 Numerical Method 24
3.3 Symmetry Reduction of the Jacobian Matrix 30
3.4 Solutions for Systems With Site Charges 32
3.5 Alternative Numerical Techniques 33
3.6 References 34

CHAPTER 4 ON THE STRUCTURE FACTOR OF DIPOLAR MOLECULAR FLUIDS 35
4.1 Introduction 36
4.2 Theory 37
4.3 Numerical Results 44
4.4 Discussion 53
4.5 References 55
CHAPTER 5 APPLICATION TO LIQUID ACETONITRILE 56
 5.1 Introduction 57
 5.2 The Intermolecular Potential 59
 5.3 Numerical Solution of the SSOZ-HNC Equation 61
 5.4 Results 62
 5.5 Discussion 68
 5.6 References 69

CHAPTER 6 CONCLUDING REMARKS 70
 6.1 Summary and Conclusions 71
 6.2 References 77

APPENDICES
 A1 Small k Behaviour of Renormalised Potentials 78
 A2 Free Energy Functions in the SSOZ-HNC Theory 83
 A3 Publications 91
ACKNOWLEDGEMENTS

I would like to gratefully acknowledge the support and guidance of my supervisors, Dr. Lawrie A. Dunn at the University of Tasmania, and Dr. Gary P. Morriss at the Research School of Chemistry, A.N.U., Canberra.

Also, acknowledgement is due for the receipt of a Commonwealth Postgraduate Research Award and for Special Research Grants assistance from the University of Tasmania.

Thank you to the staff and fellow students of the Chemistry Department, University of Tasmania for helping to make my time here, both very rewarding and enjoyable.

Finally, I would like to thank my parents. Without their love, encouragement and unfailing support, none of this would have been possible.
This thesis is an examination of the application of integral equation theory to the study of polar molecular liquids. The integral equation used as the basis for this work is the site-site Ornstein-Zernike (SSOZ) equation coupled with the hypernetted chain (HNC) approximation as the closure. The numerical solution of the SSOZ equation using Gillan's method is examined in detail, and in particular for liquid systems with Coulombic interactions. A method is presented for the symmetry reduction of the Jacobian matrix to facilitate the numerical solution for larger molecular systems. This method is not based on the individual analytic reduction of the matrix integral equation for molecules of particular symmetries, but is a simple procedure within the numerical solution algorithm itself. This allows its general use for molecules of arbitrary symmetry.

It is demonstrated analytically for a non-linear triatomic model with charges on the end sites, that the SSOZ-HNC equation effectively decouples, with the decoupling being dependent on the difference between the multiplicative and additive means of the radial distribution functions involving only charged sites. This decoupling has the consequence that the structural effects due to the dipolar interactions cancel each other out. This results in the dipolar interactions having little or no effect on the calculated structure factor.

The numerical solution to the SSOZ-HNC equation is obtained for a series of hard and soft sphere, non-linear, dipolar, triatomic models. The results obtained show that the dipolar interactions have a very significant effect on the liquid structure but that this is not reflected in the corresponding structure factor due to the effective decoupling of the integral equation.

This effective decoupling phenomenon is predicted to apply to a range of dipolar molecular liquids. To test this, the SSOZ-HNC equation is solved for an interaction site potential model for the highly dipolar, but non-hydrogen bonded liquid, acetonitrile. The radial distribution functions obtained show that the dipolar interactions have a significant effect on the liquid structure.
However, as predicted, there is very little effect on the calculated scattering function. Also, there is very good agreement between the calculated and experimental neutron scattering, coherent differential cross section. Comparison of the SSOZ-HNC radial distribution functions and internal energies with molecular dynamics simulation results from the literature for the same potential showed overall, very good agreement. From these results, it was also concluded that there are two dominant, nearest neighbour orientations in liquid acetonitrile due to the dipolar interactions.