Geology and genesis of the Ridgeway porphyry Au-Cu deposit, NSW

by

Ana Liza Garcia-Cuison (Bsc)

Submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

University of Tasmania

November, 2010

University of Tasmania

ARC Centre of Excellence in Ore Deposits
Declaration

This thesis contains no material that has been accepted for a degree or diploma by the University or by any other institution, except by way of background information and duly acknowledged in the thesis, and to the best of the candidate’s knowledge and belief, no material previously published or written by another person except where due acknowledgement is made in the text of the thesis.

Ana Liza Garcia-Cuison

Date:

Confidentiality

This thesis is not to be made available for loan or copying for 12 months following the date this statement was signed. Following the time, the thesis may be made available for loan and limited copying in accordance with the Copyright Act 1968.

Ana Liza Garcia-Cuison

Date:
Abstract

The Ridgeway alkalic porphyry Au–Cu deposit is located in the Molong Volcanic Belt of the Macquarie Arc, part of the Lachlan Fold Belt in eastern Australia. Ridgeway is hosted by a Middle Ordovician sequence of volcano-sedimentary rocks that were deposited in an active submarine sedimentary basin. The volcanic sequence evolved from fine grained distal volcaniclastics (Weemalla Formation) to coarse proximal breccias and sandstones (Forest Reef Volcanics). The host sequence was intruded first by pyroxene- and feldspar-phyric dikes and sills, and then by the Ridgeway intrusive complex, a cluster of subvertical porphyry pipes, dikes and stocks of monzodiorite (U–Pb zircon age: 448.2 ± 2.1 Ma), mafic monzonite and quartz monzonite (U–Pb zircon age: 444.2 ± 1.3 Ma). Cross-sectional shapes of the monzonite intrusions are broadly pipe-like. They swell at the contact between the Weemalla Formation and Forest Reef Volcanics.

The highest Au–Cu grades at Ridgeway are associated with quartz–magnetite–bornite vein stockworks and intense K-silicate alteration that formed during the emplacement of the mafic monzonite. These early stage veins have been truncated by the quartz monzonite porphyry and its lower grade quartz–chalcopyrite ± molybdenite veins (Re–Osmolybdenite: 445.7 ± 2.8 Ma, 442.8 ± 2.3 Ma) associated with less intense K-silicate alteration. A late-stage quartz monzonite cut the earlier phases, and defines the low-grade core of the deposit.

The mafic monzonite and quartz monzonite contain magnetite- and quartz-rich unidirectional solidification textures (USTs), miarolitic cavities and aplite vein-dikes. These textural features imply that magmatic-hydrothermal fluids streamed through and accumulated within the narrow pipes, which acted as a conduit to supply fluids from a deeper magma to the site of ore deposition. Mineralizing fluids were released when the carapace of the crystallizing fluids failed, and were emplaced preferentially into two subvertical vein systems that formed via hydraulic fracturing.
The older veins (set 2) strike N, WNW and NE, whereas the younger mineralized structures (set 3) strike E, NE and NW.

Cathodoluminescence imaging of quartz shows that most of the quartz (Qz-1) crystallized early in the history of vein formation. Dissolution of Qz-1 was then followed by the deposition of a second quartz generation (Qz-2). Cu–Fe sulfides were then deposited together with a later generation of darkly-luminescent quartz (Qz-3). Bright luminescence in Qz-1 correlates with elevated Al, Ti and K concentrations, whereas dull-luminescent Qz-3 is comparatively rich in Fe. High-temperature Qz-1 precipitated during vein stockwork formation at temperatures between 601º and 850ºC in equilibrium with hydrothermal K-feldspar. Changes in pressure and temperature occurred during mechanical fracturing that created secondary permeability exploited by Qz-2. Further decrease in pressure and/or temperature facilitated the precipitation of Qz-3 at temperatures below 589ºC, synchronous with Fe–Cu sulfides.

Sulfur isotopic compositions of sulfides from Ridgeway show increasing δ34S depletion in the sequence of pyrite (ave. -1.8 ‰), chalcopyrite (ave. -3.6 ‰) and bornite (ave. -4.9 ‰). Low δ34Sbornite and δ34Schalcopyrite values occur in the core of the deposit. Isotopically light δ34Spyrite values are also found in the core of the deposit, but these become more negative towards the top of the deposit, in the epidote–chlorite–hematite alteration zone. This is consistent with isotopic fractionation caused by cooling of the magmatic-hydrothermal fluids under oxidizing conditions during late-stage pyrite deposition.

The Ridgeway deposit was localized at the intersection of NW-trending faults and a NNW-trending monocline. The pre-existing NW-trending parallel wedge-shape faults provided the pathways for the deep-seated magma to migrate into the shallow crust. Roof-lifting within the fault wedge provided space for monzonite emplacement. At Ridgeway, there was an intimate link between magmatism and a dynamic structural environment that ultimately controlled the genesis of the high-grade orebody and provided an excellent focus for fluid flow in a well-developed vein stockwork.
First and foremost, I would like to thank my husband, Al, for all the support, encouragement, love and understanding over the years of this study. You have given up so much for me to pursue my dreams, for this I am truly grateful. To our children, Lean and Aaron, thank you for your understanding.......now the fun part begins.

To my supervisor, Dave Cooke, I would like to extend my sincerest thanks and appreciation, not only for initiating this project in collaboration with Newcrest, but for your support and patience over the years. Thank you Dave for showing little restraint when it came to editing my drafts - for your dedication to enforce the rudiments of the English language, and for your perseverance to instil in your student the importance of technical syntax. Thank you for imparting your expertise - I have learned a lot through the years, for which I am extremely grateful.

I would like to thank my two co-supervisors, Anthony Harris and Ron Berry for providing sound technical input. Thanks Anthony for introducing me to the enigmatic mushy-features of magma. And Ron, thank you for sharing your expertise and providing numerous edits of my structural model. Sincere thanks to Richard Tosdal for his help and patience in explaining the complexities of structures in the field.

Many thanks are extended to Newcrest Mining Limited and the ARC Centre of Excellence in Ore Deposit Research for the financial, technical and logistical support of this research project. Additional research fund also came from the SEG Foundation-McKinstry grant.

Special thanks go to Newcrest geoscientists John Holliday, Ian Tedder, Dean Collett, Collin McMillan, Geoff Smart, among others for the support on the different aspects of the study. Matt Hatzl, Katrina Thiel, Robyn Ransley, Caroline Hassall, and the Rockdoctors are thanked for logistic support extended in the field. Special thanks go to Dave Coates, Raquel Kolkert, Megan Evitt and John Chow, and Lea for being especially hospitable during my stay in Orange. Many thanks to Mark Gabbitus for allowing to me use the MineSight software.
I would like to extend my gratitude and appreciation to the academic staffs at CODES which provided expert advice during the course of this study: Tony Crawford for the insightful discussion on my whole rock geochemistry; Garry Davidson for the sulfur isotope 101 lectures and discussions on my isotope data; Sebastien Mefree for his help in concordia plots; and Zhaoshan Chang for always being there, not only as a friend, but also for sharing his expertise on skarn. Karsten Goemann at the CSL is thanked for his assistance in the microprobe.

Big thanks to Jocelyn McPhie, Karin Orth, Isabelle Chamberfort, David Hutchinson and Huayong Chen for the encouragement. Joce – thanks a lot for everything. To Julie Hunt, I cannot thank you enough for all your help to me and my family – it is greatly appreciated.

I wish to thank the School of Earth Sciences support staffs: Simon Stephens for processing my samples, Peter Cornish for the help when we were re-arranging our office (I still use a stool when trying to reach things), Dianne Madden for the help in the admin, Christine Higgins, Helen Scott, Karen Molross and Dianne Steffens, for taking care of the financial aspects (and saved me the worry of financial crisis), Isabella von Lichtan, for the expert advice in taking rock pictures, Sarah Gilbert, for her assistance on trace element mapping, and Keith Dobson, for all the technical support. Special thanks to June Pongratz in the editorial side of this thesis.

To my current and former postgraduate colleagues, thank you for the friendship, support and conversation: Bronto, Taka, Sang, Nathan, Anita, Joe, Ben, Tim, Patrick, Claire (thanks for the wool blanket), Hugo, Andrea, Adam, Sarah, Martin, Heidi, Sofia, Natalee, Olga, Adel, Kyrill and Roisin. Special thanks to Wojciech, Masoe, Jacq, Gisela and Fiona for all the advice and encouragement, especially on the final months in writing my thesis.

Finally, I would like to thank my mother, sisters, brother and in-laws for all the encouragement and support over the years.

To my late father and sister..........I made it.
Table of Contents

Abstract ... i
Acknowledgements ... iii
Table of Contents... v
List of Figures.. xi
List of Tables... xii
List of Appendices... xvii
List of Abbreviations.. xix

Chapter 1: Introduction
 1.1. Preamble... 1
 1.2. Projects aims and objectives.. 5
 1.3. Methodology.. 6
 1.4. Thesis Organization... 7
 1.5. Cadia District - Exploration and mining history... 8
 1.5.1. Ridgeway Au–Cu porphyry deposit... 10
 1.6. Previous research... 12

Chapter 2: Regional Geology
 2.1 Introduction... 15
 2.2 Tasman Fold Belt.. 15
 2.3 Lachlan Fold Belt (Lachlan Orogen).. 17
 2.4 Deformation in the Lachlan Fold Belt.. 20
 2.5 Macquarie Arc... 22
 2.6 Crustal-scale structures and metallogeny of the Macquarie Arc....................... 28
 2.6.1 Lachlan Transverse Zone.. 29
 2.7 Metallogeny in the Macquarie Arc... 31

Chapter 3: Geology, Geochronology and Geochemistry
 3.1 Introduction... 35
 3.2 District Geology... 35
 3.3 Ridgeway Geology.. 37
 3.3.1 Weemalla Formation.. 38
 3.3.1.1 Feldspathic sandstone and siltstone... 52
 3.3.1.2 Calcareous sandstone and siltstone.. 52
Table of Contents

3.3.1.3 Laminated and siliceous siltstone .. 52
3.3.2 Transitional unit ..53
3.3.3 Forest Reefs Volcanics ..53
 3.3.3.1 Polymictic volcaniclastic lithic conglomerate and breccia54
 3.3.3.2 Monomictic volcanic breccia ..58
 3.3.3.3 Massive feldspathic sandstone and siltstone 58
 3.3.3.4 Pyroxene-phryic and feldspar-phryic intrusions 59
3.4 Ridgeay intrusive complex ... 63
 3.4.1 Pre-mineralization intrusion ..65
 3.4.1.1 Monzodiorite .. 65
 3.4.2 Syn-mineralization intrusions ...68
 3.4.2.1 Mafic monzonite porphyry ..68
 3.4.2.2 Quartz monzonite porphyry ...71
 3.4.3 Late stage intrusion ...75
 3.4.3.1 Late-stage quartz monzonite ..75
3.5 Mafic xenoliths ...78
3.6 Tertiary Basalt ...79
3.7 U–Pb Geochronology ..79
 3.7.1 Ridgeay $^{206}\text{Pb}/^{238}\text{U}$ geochronology 80
3.8 Igneous Geochemistry ...82
 3.8.1 Hydrothermal alteration effects and element mobility 83
 3.8.2 Major element geochemistry ... 84
 3.8.3 Trace and rare earth elements geochemistry ... 89
 3.8.4 Comparison to Northparkes district .. 96
3.9 Discussion ...96
 3.9.1 Deposition of the Ridgeay host rocks .. 96
 3.9.2 Ridgeay intrusive complex ..97
 3.9.3 Timing and nature of magmatism ..100
3.10 Summary ...101

Chapter 4: Alteration and Mineralization

4.1 Introduction ..103
4.2 Previous work ...105
4.3 Ridgeay vein paragenesis ...106
 4.3.1 Pre-main mineralization veins - Stage 1 ...114
 4.3.1.1 Stage 1A Magnetite veinlets ...114
 4.3.1.2 Stage 1B Actinolite–magnetite veins ..115
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3.2</td>
<td>Main mineralization stage veins - Stage 2</td>
<td>116</td>
</tr>
<tr>
<td>4.3.2.1</td>
<td>Stage 2A Quartz–magnetite veins</td>
<td>117</td>
</tr>
<tr>
<td>4.3.2.2</td>
<td>Stage 2B Quartz–banded magnetite–bornite veins</td>
<td>117</td>
</tr>
<tr>
<td>4.3.2.3</td>
<td>Stage 2C Vein-dikes</td>
<td>120</td>
</tr>
<tr>
<td>4.3.2.4</td>
<td>Stage 2D Quartz–bornite veins</td>
<td>121</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Main mineralization stage veins - Stage 3</td>
<td>121</td>
</tr>
<tr>
<td>4.3.3.1</td>
<td>Stage 3A Quartz–chalcopyrite veins</td>
<td>121</td>
</tr>
<tr>
<td>4.3.3.2</td>
<td>Stage 3B Vein-dikes</td>
<td>122</td>
</tr>
<tr>
<td>4.3.3.3</td>
<td>Stage 3C Chalcopyrite–epidote veins</td>
<td>122</td>
</tr>
<tr>
<td>4.3.3.4</td>
<td>Stage 3D Quartz ± chlorite veins</td>
<td>122</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Late stage veins - Stage 4</td>
<td>127</td>
</tr>
<tr>
<td>4.3.4.1</td>
<td>Stage 4A Pyrite ± quartz veins</td>
<td>127</td>
</tr>
<tr>
<td>4.3.4.2</td>
<td>Stage 4B Epidote ± chlorite veins</td>
<td>127</td>
</tr>
<tr>
<td>4.3.4.3</td>
<td>Stage 4C Chlorite-rich matrix breccias</td>
<td>128</td>
</tr>
<tr>
<td>4.3.4.4</td>
<td>Stage 4D Calcite–prehnite ± quartz veins</td>
<td>129</td>
</tr>
<tr>
<td>4.4</td>
<td>Hydrothermal Alteration</td>
<td>129</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Early alteration stage</td>
<td>132</td>
</tr>
<tr>
<td>4.4.1.1</td>
<td>Quartz ± albite alteration</td>
<td>132</td>
</tr>
<tr>
<td>4.4.1.2</td>
<td>Garnet–epidote alteration</td>
<td>137</td>
</tr>
<tr>
<td>4.4.1.3</td>
<td>Magnetite–actinolite–albite–biotite alteration</td>
<td>142</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Main stage alteration</td>
<td>143</td>
</tr>
<tr>
<td>4.4.2.1</td>
<td>Orthoclase–biotite–albite–magnetite–actinolite alteration</td>
<td>143</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Late stage alteration</td>
<td>149</td>
</tr>
<tr>
<td>4.4.3.1</td>
<td>Late orthoclase–albite alteration</td>
<td>149</td>
</tr>
<tr>
<td>4.4.3.2</td>
<td>Epidote–chlorite–hematite alteration</td>
<td>149</td>
</tr>
<tr>
<td>4.4.3.3</td>
<td>Hematite alteration</td>
<td>152</td>
</tr>
<tr>
<td>4.4.3.4</td>
<td>Outer propylitic alteration</td>
<td>152</td>
</tr>
<tr>
<td>4.4.3.5</td>
<td>Albite–quartz–pyrite–sericite alteration</td>
<td>153</td>
</tr>
<tr>
<td>4.4.4</td>
<td>Fault-related alteration</td>
<td>153</td>
</tr>
<tr>
<td>4.4.4.1</td>
<td>Clay–chlorite alteration</td>
<td>153</td>
</tr>
<tr>
<td>4.4.4.2</td>
<td>Epidote–hematite alteration</td>
<td>154</td>
</tr>
<tr>
<td>4.4.4.3</td>
<td>Carbonate alteration</td>
<td>154</td>
</tr>
<tr>
<td>4.5</td>
<td>Gold and copper grade distribution</td>
<td>154</td>
</tr>
<tr>
<td>4.6</td>
<td>Re–Os Geochronology</td>
<td>162</td>
</tr>
<tr>
<td>4.6.1</td>
<td>Re–Os Analytical Methods</td>
<td>162</td>
</tr>
<tr>
<td>4.6.2</td>
<td>Previous Re–Os geochronological studies</td>
<td>163</td>
</tr>
</tbody>
</table>
Table of Contents

4.6.3 Results..163
4.7 Discussion...164
 4.7.1 Pre-mineralization stage..164
 4.7.2 Fluid evolution in space and time...165
 4.7.3 K-silicate (Potassic) alteration and Au–Cu ore...166
 4.7.4 Relationships between unidirectional solidification textures to Au–Cu
 mineralization..166
 4.7.5 Ore distribution..169
 4.7.6 Timing of the Magmatic - Hydrothermal System..170
4.8 Summary..173

Chapter 5: Structural Geology
 5.1 Introduction..175
 5.2 Field Methods and Data Presentation...176
 5.3 Previous Work..178
 5.4 Structure of the Cadia district..179
 5.4.1 Regional-scale structures...179
 5.4.2 District-scale structures..180
 5.5 Structures at Ridgeway...182
 5.5.1 Folds...182
 5.5.2 Faults...184
 5.5.2.1 Northwest-striking, steeply-dipping faults...185
 5.5.2.2 North-northwest striking, southwest-dipping reverse faults.............189
 5.5.2.3 Low-angle thrust faults..191
 5.6 Geometry of veins and structures at Ridgeway..192
 5.6.1 Domain Analysis...197
 5.6.1.1 Vein set 1...197
 5.6.1.2 Vein set 2...199
 5.6.1.3 Vein set 3...201
 5.6.1.4 Vein set 4...203
 5.6.2 Comparison with pre-existing mine data..204
 5.6.3 Dikes and sills..205
 5.7 Structural level plans...206
 5.7.1 5100mRL...206
 5.7.2 5255mRL...207
 5.7.3 5330mRL...209
 5.8 Discussion and Summary..210
5.8.1 Deposit-scale structural interpretations ... 210
5.8.1.1 Pre-mineralization deformation .. 210
5.8.1.2 Mafic dikes as paleostress-direction indicator 210
5.8.2 Magma intrusion: a structural model .. 211
5.8.3 Vein formation, fluid pressure and differential stress 217
5.8.4 Structural History .. 218

Chapter 6: Hydrothermal Geochemistry

6.1 Introduction .. 223
6.2 Cathodoluminescence .. 223
6.2.1 Methodology ... 224
6.2.2 Hydrothermal quartz vein textures .. 225
6.2.2.1 Qz-1A: euhedral growth zones ... 226
6.2.2.2 Qz-1B: diffuse zones .. 227
6.2.2.3 Qz-2: quartz overgrowths on dissolution surfaces 227
6.2.2.4 Qz-3: CL-dark luminescence .. 227
6.2.3 Electron microprobe results ... 228
6.2.3.1 Stage 2B quartz–banded magnetite–bornite veins 228
6.2.3.2 Stage 2D quartz–bornite vein .. 229
6.2.3.3 Stage 3A quartz–chalcopyrite vein .. 234
6.2.3.4 Stage 3D quartz vein .. 236
6.2.4 Titanium-in-quartz geothermometer ... 236
6.2.5 Discussion .. 239
6.2.5.1 Correlation between quartz types, CL intensity and trace elements 239
6.2.5.2 Temperature of quartz formation and sulfide precipitation 241
6.3 Fluid Inclusions ... 241
6.3.1 Previous work ... 242
6.3.2 Methodology ... 243
6.3.3 Classification ... 243
6.3.4 Microthermometry results ... 244
6.3.5 Discussion ... 246
6.3.5.1 Pressure and depth estimates ... 246
6.4 Sulfur Isotopes ... 248
6.4.1 Previous Work ... 248
6.4.2 Methodology ... 248
6.4.3 Results .. 250
6.4.3.1 Stage 2B and 2D veins ... 250
6.4.3.2 Stage 3A and 3C veins .. 252
6.4.3.3 Stage 4A pyrite veins and disseminations ... 252
6.4.4 Discussion ... 257
 6.4.4.1 Fluid and sulfur sources ... 257
6.5 Oxygen Isotopes ... 259
 6.5.1 Previous work .. 260
 6.5.2 Methodology .. 261
 6.5.3 Results ... 261
 6.5.4 Discussion .. 261
6.6 Summary ... 264

Chapter 7: Summary and Genetic Model
7.1 Introduction .. 265
7.2 Volcano-sedimentary succession, magmatism and volcanic setting 265
7.3 Ridgeway genetic model ... 267
 7.3.1 Structural controls and history of emplacement 267
 7.3.2 Intrusions, alteration and mineralization ... 270
 7.3.2.1 Pre-mineralization: monzodiorite, stage 1 veins and related hydrothermal alteration events .. 271
 7.3.2.2 Main-stage mineralization: mafic monzonite porphyry, stage 2 veins and related hydrothermal alteration events .. 270
 7.3.2.3 Main-stage mineralization: quartz monzonite porphyry, stage 3 veins and related hydrothermal alteration events 272
 7.3.2.4 Late-stage: equigranular quartz monzonite, stage 4 veins and related hydrothermal events ... 273
 7.3.2.5 Post-mineralization: fault-related hydrothermal alteration events 277
 7.3.3 Timing of igneous activity and sulfide mineralization 278
 7.3.4 Sulfide precipitation .. 279
 7.3.5 Gold enrichment in the alkaline melts at Ridgeway 279
7.4 Exploration Implication .. 280
7.5 Further Work .. 281

References ... 283