Geophysical signatures of copper-gold porphyry and epithermal gold deposits, and implications for exploration

Thesis submitted by
Terence Hoschke, BSc (hons)

Submitted in partial fulfilment of the requirements for the Degree of Master of Science (Exploration Geoscience)

University of Tasmania (June, 2010)
DECLARATION

This thesis contains no material which has been accepted for a degree or diploma by the University or any other institution, except by way of background information and duly acknowledged in the thesis, and to the best of the candidate’s knowledge and belief no material previously published or written by another person except where due acknowledgement is made in the text of the thesis, nor does the thesis contain any material that infringes copyright.

Terry Hoschke
June 2010

STATEMENT OF ACCESS

This thesis may be made available for loan and limited copying in accordance with the Copyright Act 1968.

Terry Hoschke
June 2010
ABSTRACT

Geophysical data are presented for a number of deposits including the Batu Hijau, Elang, Grasberg, and Alumbrera porphyry copper-gold deposits; the Martabe and Yanacocha high sulphidation epithermal gold deposits; and the Pajingo and Waihi low sulphidation epithermal gold deposits. The physical properties of the mineralisation and alteration are discussed with an emphasis on those properties that can be measured with standard exploration techniques.

Mineralisation in porphyry Cu-Au deposits is commonly associated with magnetite that can produce strong discrete magnetic anomalies. This is usually within a zone of magnetite-destructive alteration that can be identified with a high resolution magnetic survey. Magnetic surveys are also useful in defining regional structure and geology in the porphyry environment. Strong chargeabilities due to sulphides are typically associated with porphyry systems. Mineralisation and clay-pyrite alteration can produce strong anomalies, and late stage and post mineral intrusions can be mapped as chargeability lows within the system. These systems may be more conductive than the host rocks because of clay-pyrite alteration and sulphide veining, and airborne EM can be useful in locating and defining their extent. Gravity, radiometrics, remote sensing and topography may also be useful in exploration for porphyry Cu-Au deposits.

In high sulphidation epithermal systems gold is commonly associated with massive silica alteration. This alteration results in resistivities in the order of thousands of ohm-meters compared with background resistivities of tens of ohm-meters in argillic and propylitic alteration. Both ground resistivity and airborne EM surveys have been successful in locating and defining these deposits. Alteration in high sulphidation epithermal deposits is magnetite destructive over a large area, although it does not appear to have a large vertical extent as the subdued character of the underlying lithologies can be observed.

Typically, gold in low sulphidation epithermal deposits is in thin quartz veins that are associated with major structures. The alteration associated with the veins is magnetite destructive, and high resolution magnetics can be a very useful and cost-effective technique to map the structures and alteration. Some deposits are associated with broad zones of magnetite destruction which is apparent in the regional magnetics. The mineralised quartz veins are within broader zones of
silicification, and resistivity surveying can be used to map these zones. Generally, the high resistivity zones due to silicification are coincident with the structures identified in the magnetics.

High resolution magnetics and electrical surveys are the most useful geophysical techniques in exploration for porphyry and epithermal deposits. Airborne magnetic and EM surveys are fast and cost effective, particularly in areas of rugged topography. Regional magnetics, gravity, remote sensed data and topographic data can also be used to identify major structures, intrusive complexes and alteration. Radiometric surveys can be useful in mapping geology and alteration.
ACKNOWLEDGMENTS

I would like to acknowledge Newmont Mining Corporation, Freeport McMoRan Copper and Gold Inc., Xstrata (MIM) and Oxiana Limited for access to data and samples, and permission to publish. I would like to thank Jeremy Cook and Paul Heithersay of North Limited, Garry Fallon and Nick Sheard of MIM, Mike Sexton of Normandy Mining, and Tom Weis and Adi Maryono of Newmont for their support and advice.

I am particularly indebted to David Clark who collected the initial samples at Alumbrera and who helped with measurements and interpretation of the palaeomagnetic samples. Phil Schmidt helped with advice and plotting the magnetic remanence components. I would also like to thank Imants Kavalieris for help in collecting the Grasberg samples and petrography on the porphyry samples, and Don Emerson for measurements of electrical properties of a number of the porphyry samples.

Special thanks to the researchers at CODES, and in particular Ross Large and Bruce Gemmell, not only for their technical support, but also for their patience and encouragement over the course of the project.

Many thanks also to Tania Whisson and John Hammond for reviewing this document.
CONTENTS

Declaration i
Statement of Access i
Abstract ii
Acknowledgments iv
Contents v
Figures vi
Tables viii

1. INTRODUCTION 1
 1.1 Background 1
 1.2 Method 2
 1.3 Literature Review 3
2. PORPHYRY CU-AU DEPOSITS 9
 2.1 Batu Hijau 9
 2.2 Elang 12
 2.3 Grasberg 15
 2.4 Alumbrera 19
3. HIGH SULPHIDATION EPITHERMAL DEPOSITS 23
 3.1 Martabe 23
 3.2 Yanacocha 27
4. LOW SULPHIDATION EPITHERMAL DEPOSITS 31
 4.1 Pajingo 31
 4.2 Waihi 34
5. DISCUSSION 37
6. EXPLORATION IMPLICATIONS 41

REFERENCES

APPENDICES

Appendix 1 Laboratory magnetic property measurements of samples from Alumbrera, Batu Hijau and Grasberg

Appendix 2 Laboratory electrical property measurements of samples from Alumbrera, Batu Hijau and Grasberg
FIGURES

1.1. Location of the western Pacific deposits discussed in this thesis

1.2. The predicted magnetic anomaly over a porphyry copper system

1.3. IP response of a porphyry copper system

1.4. Observed relationship between resistivity and weight percent sulphide content from in-situ measurements of porphyry copper deposits

1.5. Cross-section of alteration zones characteristic of high-sulphidation deposits

1.6. Diagram of hypothetical low sulphidation epithermal gold deposit to illustrate the effect of erosion level on geophysical responses

2.1 Batu Hijau geology, sulphide content, alteration, and RTP magnetics

2.2 Batu Hijau section showing the relationship of Au and Cu with magnetic susceptibility measured on drill core, and the observed and calculated magnetic response of the deposit

2.3 Stereographic projections of components isolated in Batu Hijau by stepwise thermal and stepwise AF demagnetisation

2.4 Batu Hijau section showing chalcopyrite and pyrite concentrations and chargeability.

2.5 Elang porphyry showing a plan of alteration, RTP magnetics, 200 m depth slice of resistivity, and 200 m depth slice of chargeability

2.6 Grasberg Cu and Au grade shells with geology
2.7 North-south section through Grasberg showing interpreted geology and the magnetic model with observed and calculated TMI

2.8 Stereographic projections of components isolated in Grasberg by stepwise thermal and stepwise AF demagnetisation

2.9 Photograph of a conductive sample of Grasberg ore

2.10 Alumbrera porphyry deposit with alteration, RTP magnetics, potassium, geology, resistivity, and topography

2.11 Stereographic projections of components isolated in Alumbrera by stepwise thermal and stepwise AF demagnetisation

2.12 Alteration section with chargeability and resistivity through Alumbrera

3.1 East-west section through the Purnama deposit at Martabe

3.2 Depth slice of resistivity and gold 50m below topography through the Purnama deposit

3.3 Comparison of airborne TEM resistivity with pole-dipole resistivity at Martabe

3.4 Martabe RTP magnetics. The known silica bodies are outlined in Black. The dynamic range of the colour stretch is about 1000nT

3.5 Martabe radiometrics. K-red, Th-green, U-blue

3.6 Plan of Yanacocha alteration with the location of the gold deposits

3.7 Yanacocha pole-dipole resistivity (100 m depth slice)

3.8 Yanacocha RTP magnetics

3.9 Yanacocha radiometrics
4.1 Location of the Vera-Nancy vein system with the geology, resistivity, and RTP magnetics

4.2 Alteration section through the Vera deposit at Pajingo

4.3 Type section through the Favona deposit showing typical resistivities of the alteration and 1D inversion of the CSAMT along the same section

4.4 Section through Golden Cross showing a 2D inversion of the resistivity

5.1 Generalised model of a porphyry and epithermal system with anticipated magnetic and electrical properties

5.2 Generalised patterns of alteration in a low sulphidation epithermal system with predicted electrical responses

TABLES

1.1 The anticipated geophysical response of a low sulphidation system at various levels of erosion

6.1 Summary of the application of various geophysical techniques to the exploration of porphyry and epithermal systems