On the geoepidemiology of multiple sclerosis and environmental & infectious determinants of its clinical course

By

Steve Simpson, Jr.,
B.A., Biological Sciences (USA);
M.P.H., Infectious Disease (USA)

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

University of Tasmania, Hobart
December 2011
Declaration of originality

This thesis contains no material which has been accepted for a degree or diploma by the University of Tasmania, nor any other institution, except by way of background information and duly acknowledged in the thesis, and to the best of my knowledge and belief, no material previously published or written by another person except where due acknowledgement is made in the text of the thesis.

Signature

_____________________________ __________________________
Steve Simpson, Jr. Date
Statement of authority to access

This thesis may be available for loan. Copying of any part of this thesis is prohibited for two years from the date this statement was signed; after that time, limited copying is permitted in accordance with the Australian Copyright Act of 1968.

Signature

______________________________ ________________________________
Steve Simpson, Jr. Date
Statement of Co-authorship

This thesis includes papers for which Steve Simpson, Jr. (SSJ) is not sole author. SSJ took the lead in this research, developing and implementing the analyses included herein under the supervision of Leigh Blizzard (LB), writing manuscripts, and in the case of the meta-analysis of multiple sclerosis prevalence, designing and implementing the research project. In this process, however, he was assisted by co-authors to varying extent. Following then, the contributions of each co-author are detailed for each respective project.

1. The paper reported in Chapter 2:

- SSJ contributed to the data collection for the 2009 prevalence data along with Bruce Taylor (BT), management of the 2009 prevalence data and consolidation with the 2001 prevalence data, calculation of the 2001-2009 incidence and mortality rates; along with LB, statistical analysis of temporal trends in prevalence, incidence and mortality was done by SSJ under supervision by LB. SSJ composed drafts of the manuscript and coordinated revision.

- Fotini Pittas (FP) was involved in the development and acquisition of funding for both the 2001 and 2009 prevalence studies along with BT and Ingrid van der Mei (IvM); FP contributed to the data collection for the 2001 prevalence data along with BT; FP was involved in the conception of some of the analyses used in the study and contributed to the critical revision of the manuscript.

- LB provided guidance and supervision for all statistical analyses undertaken in this study, and was involved in the initial drafting and critical revision of the manuscript.
Statement of Co-authorship

- IvM was involved in the development and acquisition of funding for both the 2001 and 2009 prevalence studies along with BT and FP; IvM was involved in the initial drafting and critical revision of the manuscript.

- Anne-Louise Ponsonby (A-LP) was involved in the development and acquisition of funding for the 2001 prevalence study along with BT, IvM and FP, and contributed to the critical revision of the manuscript.

- BT was involved in the development acquisition of funding for both the 2001 and 2009 prevalence studies along with IvM and FP. BT was involved in data collection for both the 2001 and 2009 prevalence studies. BT was involved in the initial drafting and critical revision of the manuscript.

2. The paper reported in Chapter 3:

- SSJ conceived the project and collected all prevalence data required, from published manuscripts, conference proceedings and/or direct correspondence with study authors. In concert with and under guidance of LB, Petr Otahal (PO) and BT, SSJ developed and implemented all statistical analyses. SSJ composed the drafts of the manuscript and coordinated revision. SSJ consolidated the data and composed the table in Appendix 4A. SSJ consolidated the data and composed the initial draft and critical revision of Appendix 4B. SSJ composed the initial draft and critical revision of Appendix 4C. SSJ consolidated the data and composed the table in Appendix 4D.

- LB provided guidance and supervision for all statistical analyses undertaken in this study, and was involved in the initial drafting and critical revision of the manuscript.
Statement of Co-authorship

- PO worked in concert with SSJ, LB and BT to develop statistical analyses undertaken in this study, and was involved in critical revision of the manuscript.

- IvM was involved in the initial drafting and critical revision of the manuscript.

- BT worked in concert with SSJ, PO, and PO to develop analyses undertaken in this study, and was involved in the initial drafting and critical revision of the manuscript.

3. The paper reported in Chapter 4:

- SSJ undertook the literature review for the background and immunological actions of vitamin D and its metabolites, epidemiology of personal UV exposure, vitamin D intake and circulating levels of vitamin D and their relationship with multiple sclerosis risk and clinical course, and the role of vitamin D in manifesting or modulating other causal pathways in multiple sclerosis risk and clinical course. SSJ composed the initial draft of these sections and coordinated critical revision of the manuscript.

- Kate Greenhill (KG) undertook the literature review for the background and intracellular and genetic actions of 1,25-dihydroxyvitamin D. KG composed the initial draft of these sections and contributed to the critical revision of the manuscript.

- IvM contributed to the critical revision of the manuscript.

- Jim Stankovich (JS) provided guidance for KG and contributed to the critical revision of the manuscript.

- Jac Charlesworth (JC) provided guidance for KG and contributed to the critical revision of the manuscript.

- BT contributed to the critical revision of the manuscript.
Statement of Co-authorship

4. The paper reported in Chapter 5:

- SSJ was involved in the development and implementation of statistical analyses undertaken, under supervision by LB. SSJ composed the drafts of the manuscript and coordinated revision.

- BT was involved in the development and acquisition of funding for the MS Longitudinal Study from which the data for this analysis was drawn, along with A-LP, FP, Terence Dwyer (TD), Peter Gies (PG), and IvM; BT was involved in the data collection for the MS Longitudinal Study, along with FP, PG, and IvM. BT was involved in the initial drafting and critical revision of the manuscript.

- LB provided guidance and supervision for all statistical analyses undertaken in this study, and was involved in the initial drafting and critical revision of the manuscript.

- A-LP was involved in the development and acquisition of funding for the MS Longitudinal Study, along with BT, FP, TD, PG, and IvM; A-LP contributed to the critical revision of the manuscript.

- FP was involved in the development and acquisition of funding for the MS Longitudinal Study, along with BT, A-LP, TD, PG, and IvM. FP was involved in the data collection for the MS Longitudinal Study, along with BT, PG, and IvM. FP contributed to the critical revision of the manuscript.

- Helen Tremlett (HT) was involved in the conception and implementation of the analyses used and contributed to the critical revision of the manuscript.
Statement of Co-authorship

- TD was involved in the development and acquisition of funding for the MS Longitudinal Study, along with BT, A-LP, FP, PG, and IvM. TD contributed to the critical revision of the manuscript.

- PG was involved in the data collection for the MS Longitudinal Study, specifically the acquisition and reading of the polysulphone badge data. PG contributed to the critical revision of the manuscript.

- IvM was involved in the development and acquisition of funding for the MS Longitudinal Study, along with BT, A-LP, FP, and TD. IvM was involved in the data collection for the MS Longitudinal Study, along with BT, FP and PG. IvM was involved in the conception of the analyses used. IvM was involved in the initial drafting and critical revision of the manuscript.

5. The paper reported in Chapter 6

- SSJ was involved in the development and implementation of statistical analyses undertaken, under supervision by LB. SSJ composed the drafts of the manuscript and coordinated revision.

- NS initiated project and was involved in initial drafting and critical revision of the manuscript.

- IvM was involved in the development and acquisition of funding for the MS Longitudinal Study, along with BT, A-LP, FP, and TD. IvM was involved in the data collection for the MS Longitudinal Study, along with BT and FP. IvM was involved in the critical revision of the manuscript.
Statement of Co-authorship

- Darryl Eyles (DE) was involved in measurement of 1,25-dihydroxyvitamin D and was involved in critical revision of the manuscript.

- Pauline Ko (PO) was involved in measurement of 1,25-dihydroxyvitamin D and was involved in critical revision of the manuscript.

- A-LP was involved in the development and acquisition of funding for the MS Longitudinal Study, along with BT, FP, TD, and IvM; A-LP contributed to the critical revision of the manuscript.

- FP was involved in the development and acquisition of funding for the MS Longitudinal Study, along with BT, A-LP, TD, and IvM. FP was involved in the data collection for the MS Longitudinal Study, along with BT and IvM. FP contributed to the critical revision of the manuscript.

- LB provided guidance and supervision for all statistical analyses undertaken in this study, and was involved in the initial drafting and critical revision of the manuscript.

- TD was involved in the development and acquisition of funding for the MS Longitudinal Study, along with BT, A-LP, FP, and IvM. TD contributed to the critical revision of the manuscript.

- BT was involved in the development and acquisition of funding for the MS Longitudinal Study from which the data for this analysis was drawn, along with A-LP, FP, TD, and IvM; BT was involved in the data collection for the MS Longitudinal Study, along with FP and IvM. BT was involved in the initial drafting and critical revision of the manuscript.

6. The paper reported in Chapter 7:

Statement of Co-authorship

- SSJ was involved in the development and implementation of statistical analyses undertaken, under supervision by LB. SSJ composed the drafts of the manuscript and coordinated revision.

- BT was involved in the development and acquisition of funding for the MS Longitudinal Study from which the data for this analysis was drawn, along with A-LP, FP, TD, and IvM; BT was involved in the data collection for the MS Longitudinal Study, along with Dominic Dwyer (DD), Janette Taylor (JT), FP and IvM. BT was involved in the initial drafting and critical revision of the manuscript.

- DD was involved in the data collection for the MS Longitudinal Study, specifically the measurement of anti-human herpesvirus IgG titres, along with JT. DD was involved in the critical revision of the manuscript.

- JT was involved in the data collection for the MS Longitudinal Study, specifically the measurement of anti-human herpesvirus IgG titres, along with DD. JT was involved in the critical revision of the manuscript.

- LB provided guidance and supervision for all statistical analyses undertaken in this study, and was involved in the initial drafting and critical revision of the manuscript.

- A-LP was involved in the development and acquisition of funding for the MS Longitudinal Study, along with BT, FP, TD, and IvM; A-LP contributed to the critical revision of the manuscript.

- FP was involved in the development and acquisition of funding for the MS Longitudinal Study, along with BT, A-LP, TD, and IvM. FP was involved in the data collection for the MS Longitudinal Study, along with BT, DD, JT, and IvM. FP contributed to the critical revision of the manuscript.
Statement of Co-authorship

- TD was involved in the development and acquisition of funding for the MS Longitudinal Study, along with BT, A-LP, FP, and IvM. TD contributed to the critical revision of the manuscript.

- IvM was involved in the development and acquisition of funding for the MS Longitudinal Study, along with BT, A-LP, FP, and TD. IvM was involved in the data collection for the MS Longitudinal Study, along with BT, DD, JT and FP. IvM was involved in the conception of the analyses used. IvM was involved in the initial drafting and critical revision of the manuscript.

7. The paper reported in Chapter 8:

Simpson, Jr. SL, Taylor B, Dwyer D, Taylor J, Blizzard L, Ponsonby A-L, Pittas F, Dwyer T, van der Mei, I. “Serological reactivation of human herpesvirus 6 is not associated with clinical outcomes in multiple sclerosis.” (unsubmitted manuscript)

- SSJ was involved in the development and implementation of statistical analyses undertaken, under supervision by LB. SSJ composed the drafts of the manuscript and coordinated revision.

- BT was involved in the development and acquisition of funding for the MS Longitudinal Study from which the data for this analysis was drawn, along with A-LP, FP, TD, and IvM; BT was involved in the data collection for the MS Longitudinal Study, along with Dominic Dwyer (DD), Janette Taylor (JT), FP and IvM. BT was involved in the initial drafting and critical revision of the manuscript.

- DD was involved in the data collection for the MS Longitudinal Study, specifically the measurement of anti-human herpesvirus IgG titres, along with JT. DD was involved in the critical revision of the manuscript.
Statement of Co-authorship

- JT was involved in the data collection for the MS Longitudinal Study, specifically the measurement of anti-human herpesvirus IgG titres, along with DD. JT was involved in the critical revision of the manuscript.

- LB provided guidance and supervision for all statistical analyses undertaken in this study, and was involved in the initial drafting and critical revision of the manuscript.

- A-LP was involved in the development and acquisition of funding for the MS Longitudinal Study, along with BT, FP, TD, and IvM; A-LP contributed to the critical revision of the manuscript.

- FP was involved in the development and acquisition of funding for the MS Longitudinal Study, along with BT, A-LP, TD, and IvM. FP was involved in the data collection for the MS Longitudinal Study, along with BT, DD, JT, and IvM. FP contributed to the critical revision of the manuscript.

- TD was involved in the development and acquisition of funding for the MS Longitudinal Study, along with BT, A-LP, FP, and IvM. TD contributed to the critical revision of the manuscript.

- IvM was involved in the development and acquisition of funding for the MS Longitudinal Study, along with BT, A-LP, FP, and TD. IvM was involved in the data collection for the MS Longitudinal Study, along with BT, DD, JT and FP. IvM was involved in the conception of the analyses used. IvM was involved in the initial drafting and critical revision of the manuscript.

Signed ________________________________
Associated Professor Bruce Taylor
Supervisor
Menzies Research Institute Tasmania
University of Tasmania
Date ________________

Signed ________________________________
Professor Simon Foote
Head of School
Menzies Research Institute Tasmania
University of Tasmania
Date ________________
Acknowledgements

I am indebted to the thorough and patient guidance and support I received from my supervisors, Bruce, Ingrid & Leigh, throughout the duration of my PhD. They provided me the structure within which I could complete my projects, while giving me the intellectual freedom to develop my own ideas and projects and grow as a researcher. For this and more, they have my sincere thanks.

For my world outside of work, I owe my sanity and stability to my dear partner, Abel, without whom I would have been hard pressed to handle the stressors of life as a doctoral student. He has always kept my home life happy and stable, and I have always known that whatever drama ensued during the day, I had his smiling face to come to. Abel, you are my strength and anchor in life, and I’d be lost without you.

Lastly, I would offer my thanks to the participants of the MS Longitudinal Study and the MS Prevalence & Genetics Study, as well as the innumerable participants in the studies included in my meta-analysis. The work we do would not exist were it not for their kind participation and giving of their time, so at the very least I hope that the work of my thesis in some way is of help to our participants, and all persons.
Abstract

Multiple sclerosis (MS) is a chronic, demyelinating condition of the central nervous system, manifesting in alteration or loss of motor, sensory and cognitive function. The causes of MS are unclear but include genetic and environmental factors. This thesis presents several epidemiologic analyses, examining MS geoepidemiology, locally and globally, as well as evaluating key environmental and infectious determinants of clinical course.

The first analysis chapter examines MS epidemiology in the Greater Hobart region of Tasmania over the interval 1951 to 2009. This analysis found a significant increase in prevalence, this mediated by a significantly decreased mortality and increased longevity, as well as evidence of an increasing female/male sex ratio.

Next is a meta-analysis of MS prevalence and its association with latitude. This work, utilising the largest collection of MS prevalence studies, found a significant positive association between MS prevalence and latitude. This provides evidence in favour of the latitudinal gradient hypothesis and for environmental factors underlying the gradient, most particularly personal ultraviolet radiation (UVR) exposure and vitamin D.

The association between serum 25-hydroxyvitamin D (25(OH)D) and relapse was examined in a prospective cohort with clinically-definite MS followed for 2.3 years. This analysis found a significant inverse association between higher levels of 25(OH)D and subsequent hazard of relapse. This study provides key evidence that is needed to justify conducting randomised clinical trials of vitamin D supplementation in reducing relapse frequency in MS.

In this MS cohort, it was also found that persons on interferon-β (IFN-β) therapy had significantly higher 25(OH)D levels and that the association between personal sun exposure and 25(OH)D was stronger compared to those not on IFN-β. Importantly, the above association between 25(OH)D and relapse was only observed for those on IFN-β therapy.
Abstract

Last is an examination of the role of antibodies to Human Herpesvirus 6 (HHV-6) and Epstein-Barr virus (EBV) in MS clinical course. This analysis found a significant positive association between anti-HHV-6 IgG and relapse. This effect persisted on adjustment for the anti-EBV IgGs, indicating the effect was specific for HHV-6 antigen, or host antigen resembling it. There was no evidence of frequent serological HHV-6 reactivation, suggesting that the observed association between anti-HHV-6 IgG and relapse was not being mediated by serologically-detectable peripheral reactivation of HHV-6. No associations were observed between anti-HHV-6 and anti-EBV IgGs and progression in clinical disability.

This thesis presents a range of studies which add significantly to the literature on MS geoepidemiology, as well as the associations of environmental and infectious factors on MS clinical course. This work will be useful in the scientific community; both for hypothesis generation and providing strong evidence in support of existing hypotheses, and hopefully be of benefit to people with this debilitating disease.
Table of Contents

Declaration of originality ... ii
Statement of authority to access .. iii
Statement of Co-authorship .. iv
Acknowledgements .. xiii
Abstract .. xiv
Table of Contents ... xvi
List of tables .. xxv
List of figures ... xxvi
Papers directly arising from the work described in this thesis ... xxx
 Papers published ... xxx
 Other publications ... xxx
Conference presentations arising from work in this thesis ... xxxi
 Oral presentations ... xxxi
 Poster presentations ... xxxi
Awards received from the work described in this thesis .. xxxii
List of abbreviations .. xxxiii

Chapter 1. Background on multiple sclerosis, its history, pathophysiology, diagnosis and treatment 1
 1.1 Introduction .. 1
 1.2 The history of MS ... 2
 1.3 The epidemiology of MS .. 7
 1.3.1 MS in Greater Hobart, Tasmania .. 7
 1.3.2 MS latitudinal gradient ... 10
 1.4 Pathology of multiple sclerosis .. 12
 1.4.1 Neurobiology .. 12
 1.4.2 Immunology ... 15
 1.4.3 Neuropathology .. 17
 1.5 Clinical manifestation of MS .. 18
 1.5.1 MS courses .. 18
 1.5.2 Relapse .. 19
 1.5.3 Progression .. 20
 1.5.4 Fatigue .. 21
 1.6 MS diagnosis ... 22
 1.6.1 Dissemination in space and time .. 22
 1.6.2 Paraclinical evidence ... 22
Table of Contents

1.6.3 Diagnostic criteria .. 24
1.7 MS Treatment ... 29
1.7.1 Interferon-β .. 29
1.7.2 Glatiramer acetate ... 30
1.7.3 Monoclonal antibody therapies in MS ... 30
1.7.4 Fingolimod ... 32
1.7.6 Other immunomodulatory agents ... 32
1.8. MS aetiology & modulators of clinical course .. 35
1.8.1 Genetics .. 35
1.8.2 UVR & vitamin D ... 36
1.8.3 Acute Infection ... 41
1.8.4 Childhood infection ... 42
1.8.5 Human herpesviruses ... 42
1.8.6 Tobacco smoking .. 49
1.8.7 Other: pregnancy and stress .. 50
1.9 Structure of this thesis .. 52
1.10 References .. 54

Appendix 1A. Tables for seasonal, UV, vitamin D and measures of herpesvirus association with MS and its clinical course .. 75

Appendix 1A.1 References ... 99

Chapter 2. Trends in the epidemiology of multiple sclerosis in Greater Hobart, Tasmania: 1951 to 2009 104
2.1 Preface .. 104
2.2 Introduction ... 105
2.3 Methods .. 106
2.3.1 Study region and population .. 106
2.3.2 Context and case ascertainment .. 107
2.3.3 Epidemiological measures ... 108

Methods note 2.1: Estimation of sex and birthplace-specific prevalence and incidence from 1988

Hammond study .. 109
2.3.4 Age-standardisation ... 111

Methods note 2.2. Differential age-standardisation of crude 1981 prevalence by sex and birthplace 112
2.3.5 Population data .. 114
2.3.6 Statistical analysis ... 114
2.4 Results .. 115
2.4.1 2001 and 2009 studies ... 115
Table of Contents

2.4.2 Prevalence: 1961 to 2009 ... 117
2.4.3 Prevalence by birthplace: 1961 to 2009 .. 118
2.4.4 Incidence: 1951-61 to 2001-09 ... 121
2.4.5 Prevalence and incidence sex ratios: 1951 to 2009 122
2.4.6 Mortality and longevity ... 123
2.5 Discussion ... 124
2.5.1 Epidemiology by place .. 124
2.5.2 Epidemiology over time ... 125
2.5.3 The effects of migration .. 126
Discussion note 2.1. Change in Australian immigration patterns over time, pre/post-assisted
migration ... 127
2.5.4 Sex ratios over time ... 131
2.5.5 Strengths and limitations ... 132
2.5.6 Conclusion ... 132
2.6 Summary ... 133
2.7 Postscript ... 134
2.8 References ... 135
Appendix 2B. Editorial for publication “Trends in the epidemiology of multiple sclerosis in Greater Hobart, Tasmania: 1951 – 2009” ... 146
Chapter 3. Latitude is significantly associated with the prevalence of multiple sclerosis: a meta-analysis 148
3.1 Preface... 148
3.2 Introduction ... 149
3.3 Methods .. 150
3.3.1 Literature search ... 150
3.3.2 Inclusion criteria ... 151
3.3.3 Data-collection ... 151
3.3.4 HLA analysis ... 151
3.3.5 Statistical analysis .. 151
Methods note 3.1 Time-correction functions... 153
3.4 Results ... 157
3.4.1 Review of literature ... 157
3.4.2 Global analyses ... 159
3.4.3 Regional analyses ... 162
3.4.4 Adjustment for HLA-DRB1 ... 164
Table of Contents

3.4.5 Latitudinal gradient by sex ... 165
3.4.6 Exclusion of serial measures ... 165
3.4.7 Exclusion of non-systematic diagnostic criteria 165
3.4.8 Inclusion of non-peer reviewed studies .. 166
3.5 Discussion ... 166
3.5.1 Exceptions to the gradient ... 166
3.5.2 HLA-DRB1 & the gradient in Europe .. 167
3.5.3 Sex and prevalence sex ratio ... 168
3.5.4 Strengths and improvements from previous studies 168
3.5.5 Study weakness .. 171
3.5.6 Conclusion .. 172
3.6 Summary ... 173
3.7 Postscript ... 174
3.8 References ... 175

Appendix 3A. Supplementary Table 1. Study-specific information for all studies included in meta-analysis, organised by global region .. 177
 Appendix 3A.1 Australasia ... 177
 Appendix 3A.2 United Kingdom of Great Britain & Northern Ireland and Republic of Ireland 178
 Appendix 3A.3 Scandinavia and North Atlantic 180
 Appendix 3A.4 Atlantic and Central Europe .. 183
 Appendix 3A.5 Italian region ... 187
 Appendix 3A.6 Eastern Europe .. 189
 Appendix 3A.8 North America ... 195
 Appendix 3A.9 Latin America & the Caribbean 198
 Appendix 3A.10 Middle East and Africa ... 199
 Appendix 3A.11 Asia and Pacific Islands .. 201
 Appendix 3A.12 References ... 202

Appendix 3B. Outline of diagnostic criteria utilised by studies included in meta-analysis, organised in approximate temporal order of publication ... 220
 Appendix 3B.1 Early criteria (pre-Allison & Millar) 220
 Appendix 3B.1.1 Ipsen criteria: 1939-48, Boston, MA USA(1) 220
 Appendix 3B.1.2 Westlund & Kurland: 1951, Winnipeg, MT Canada & New Orleans, LA USA(2) 220
 Appendix 3B.1.3 Sutherland criteria: 1954, Northern Scotland(3) 221
 Appendix 3B.2 Allison & Millar Criteria and variants 221
 Appendix 3B.2.1 Allison & Millar criteria: 1954, Northern Ireland(4) 221
Table of Contents

Appendix 3B.2.2 Siedler Criteria: 1957, Missoula County, MT USA(5) ... 222
Appendix 3B.2.3 Deacon Criteria: 1958, Duxbury, MA USA(6) ... 222
Appendix 3B.2.4 Dean Criteria: 1960, South Africa(7) .. 223
Appendix 3B.3 World Federation of Neurology criteria and variants .. 223
Appendix 3B.3.1 Allison/World Federation of Neurology Criteria: 1960(8) ... 223
Appendix 3B.3.2 Alter Criteria: 1960, Halifax County, NS Canada & Charleston County, SC USA(9, 10) .. 224
Appendix 3B.3.3 Gilland criteria: 1965(11) .. 225
Appendix 3B.4 Poskanzer criteria and variants .. 226
Appendix 3B.4.1 Poskanzer Criteria: 1963, Northeast UK(12) .. 226
Appendix 3B.4.2 Cendrowski Criteria: 1965, Western Poland(13) ... 226
Appendix 3B.4.3 Hornabrook Criteria: 1971, Wellington, New Zealand(14) 227
Appendix 3B.5 Other intervening criteria ... 228
Appendix 3B.5.1 Chipman Criteria: 1959, Houston, TX USA(15) .. 228
Appendix 3B.5.2 Behrend criteria: 1960, Marseille, France & Hamburg, Germany(16) 228
Appendix 3B.5.3 Dassel Criteria: 1960, Groningen Province, Netherlands(17) 229
Appendix 3B.5.4 McAlpine Criteria: 1961, Middlesex Hospital, UK(18) .. 230
Appendix 3B.5.5 Schumacher Criteria: 1965(21) ... 231
Appendix 3B.5.6 Danish MS Registry Criteria: 1948-64, Denmark(22) ... 231
Appendix 3B.5.7 Detels Criteria: 1970, Los Angeles County, CA & King-Pierce County, WA USA(23) ... 233
Appendix 3B.5.8 Japanese MS Research Committee Criteria: 1972 .. 234
Appendix 3B.5.9 Bauer committee criteria: 1972(24) .. 235
Appendix 3B.5.10 German Poser: 1973, Gottingen, Germany(25-27) ... 236
Appendix 3B.5.11 Borri Criteria: 1976, Italy(28) ... 236
Appendix 3B.5.12 Rose Criteria: 1976(29) .. 237
Appendix 3B.5.13 Hader criteria: 1977, Saskatoon, Sask. Canada(30) .. 238
Appendix 3B.5.14 McDonald-Halliday Criteria: 1977(31) ... 239
Appendix 3B.5.15 Numerical Poser criteria: 1979(32) .. 241
Appendix 3B.6 Poser criteria & modifications .. 244
Appendix 3B.6.1 Poser criteria: 1983(33) .. 244
Appendix 3B.6.2 Paty modifications to Poser criteria: 1988 .. 245
Appendix 3B.6.3 Fazekas modifications to Poser criteria: 1988(35) .. 245
Appendix 3B.6.4 Barkhof modifications to Poser criteria: 1997(36) .. 245
Appendix 3B.6.5 Chancellor modifications to Poser criteria: 2003, northern New Zealand(37) 245
Table of Contents

Appendix 3B.7 McDonald Criteria: 2001(38) ... 247
Appendix 3B.8 Polman criteria – revisions to McDonald criteria: 2005(39) 248
Appendix 3B.9 References .. 249
Appendix 3C. Regional allocation rationales .. 251
Appendix 3C.1 Introduction .. 252
Appendix 3C.2 Australasia region (aqua) ... 252
Appendix 3C.3 Asia & Pacific Islands region (maroon) .. 252
Appendix 3C.4 North America region (light blue) ... 253
Appendix 3C.5 Latin America and Caribbean region (green) 253
Appendix 3C.6 Middle East & Africa region (yellow) .. 254
Appendix 3C.7 Europe .. 255
 Appendix 3C.7.1 United Kingdom & Ireland region (fuchsia) 256
 Appendix 3C.7.2 Scandinavia & North Atlantic (dark blue) 257
 Appendix 3C.7.3 Italian region (bright green) ... 257
 Appendix 3C.7.4 Eastern Europe (red) .. 258
 Appendix 3C.7.5 Atlantic & Central Europe (orange) 258
Appendix 3C.8 References .. 260
Appendix 3D. HLA-DR frequencies utilised for each of study locations for which data could be obtained ... 262
 Appendix 3D.1 United Kingdom of Great Britain & Northern Ireland and Republic of Ireland ... 262
 Appendix 3D.2 Scandinavia and North Atlantic .. 263
 Appendix 3D.3 Atlantic & Central Europe .. 263
 Appendix 3D.4 Italian region .. 265
 Appendix 3D.5 Eastern Europe ... 267
 Appendix 3D.6 Middle East & Africa ... 270
Appendix 3E. MOOSE criteria flow chart for studies included and excluded from meta-analysis ... 271
Appendix 3F. Publication of “Latitude is significantly associated with the prevalence of multiple sclerosis: a meta-analysis” ... 272

Chapter 4. The varied mechanisms of vitamin D in the onset and clinical course of MS: potential roles in modulating other etiological pathways .. 283
 4.1 Preface ... 283
 4.2 Introduction ... 284
 4.3 Background ... 284
 4.3.1 Production and functions of vitamin D ... 284
 4.3.2 Cellular & genetic activity of 1,25(OH)2D .. 287
 4.4 Epidemiology ... 290
 4.4.1 Latitude, season, UVR and MS ... 290
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4.2</td>
<td>Vitamin D and MS</td>
<td>292</td>
</tr>
<tr>
<td>4.5</td>
<td>Vitamin D and other aetiologic factors</td>
<td>295</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Vitamin D and acute infections</td>
<td>295</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Vitamin D and herpesvirus infection</td>
<td>296</td>
</tr>
<tr>
<td>4.5.3</td>
<td>Vitamin D and childhood infections</td>
<td>298</td>
</tr>
<tr>
<td>4.5.4</td>
<td>Vitamin D and stress</td>
<td>299</td>
</tr>
<tr>
<td>4.5.5</td>
<td>Vitamin D and pregnancy</td>
<td>301</td>
</tr>
<tr>
<td>4.5.6</td>
<td>Vitamin D and smoking</td>
<td>303</td>
</tr>
<tr>
<td>4.6</td>
<td>Conclusion</td>
<td>304</td>
</tr>
<tr>
<td>4.7</td>
<td>Summary</td>
<td>305</td>
</tr>
<tr>
<td>4.8</td>
<td>Postscript</td>
<td>306</td>
</tr>
<tr>
<td>4.9</td>
<td>References</td>
<td>307</td>
</tr>
<tr>
<td>Appendix 4A</td>
<td>Publication of “The varied mechanisms of vitamin D in the onset and clinical course of MS: potential roles in modulating other etiological pathways”</td>
<td>312</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 5</th>
<th>Higher 25-hydroxyvitamin D is associated with lower relapse risk in multiple sclerosis</th>
<th>327</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Preface</td>
<td>327</td>
</tr>
<tr>
<td>5.2</td>
<td>Introduction</td>
<td>328</td>
</tr>
<tr>
<td>5.3</td>
<td>Methods</td>
<td>329</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Study Design</td>
<td>329</td>
</tr>
<tr>
<td>Methods note 5.1</td>
<td>MS Longitudinal Study methods</td>
<td>329</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Measurement of relapses</td>
<td>333</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Measurement of personal sun exposure and skin type</td>
<td>333</td>
</tr>
<tr>
<td>5.3.4</td>
<td>Measurement of 25(OH)D</td>
<td>334</td>
</tr>
<tr>
<td>5.3.5</td>
<td>Statistical analysis</td>
<td>334</td>
</tr>
<tr>
<td>5.4</td>
<td>Results</td>
<td>338</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Participant characteristics</td>
<td>338</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Determinants of serum 25(OH)D levels</td>
<td>340</td>
</tr>
<tr>
<td>5.4.3</td>
<td>Univariable analysis of associations with the hazard of relapse</td>
<td>342</td>
</tr>
<tr>
<td>5.4.4</td>
<td>Association between serum 25(OH)D levels and hazard of relapse</td>
<td>343</td>
</tr>
<tr>
<td>5.4.5</td>
<td>Further analyses</td>
<td>346</td>
</tr>
<tr>
<td>5.5</td>
<td>Discussion</td>
<td>347</td>
</tr>
<tr>
<td>5.6</td>
<td>Summary</td>
<td>350</td>
</tr>
<tr>
<td>5.7</td>
<td>Postscript</td>
<td>351</td>
</tr>
<tr>
<td>5.8</td>
<td>References</td>
<td>352</td>
</tr>
<tr>
<td>Appendix 5A</td>
<td>Publication of “Higher 25-hydroxyvitamin D is associated with lower relapse risk in MS”</td>
<td>354</td>
</tr>
</tbody>
</table>
Chapter 6. Interferon-beta is associated with higher serum 25-hydroxyvitamin D and both interact to modulate relapse risk in multiple sclerosis .. 366

6.1 Preface .. 366
6.2 Introduction ... 367
6.3 Methods .. 367
 6.3.1 Study design .. 367
 6.3.2 Measurement of relapses ... 368
 6.3.3 Measurement of 25(OH)D & 1,25(OH)2D .. 369
 6.3.4 Data analysis ... 369
 6.3.5 Classification of evidence .. 370
6.4 Results .. 370
 6.4.1 Participant characteristics .. 370
 6.4.2 Predictors of serum 25(OH)D .. 372
 6.4.3 Immunomodulatory therapy and 25(OH)D ... 372
 6.4.4 Predictors of IFN-β therapy ... 373
 6.4.5 Which part of the vitamin D pathway does IFN-β modify? .. 373
 6.4.6 Interactive effects of 25(OH)D & IFN-β on hazard of relapse .. 374
6.5 Discussion ... 376
6.6 Summary .. 380
6.7 Postscript .. 381
6.8 References ... 382

Appendix 6A. Supplementary tables .. 384

Chapter 7. Anti-HHV-6 IgG titers significantly predicts subsequent relapse risk in multiple sclerosis .. 391

7.1 Preface .. 391
7.2 Introduction ... 392
7.3 Methods .. 393
 7.3.1 Study design .. 393
 7.3.2 Measurement of relapses ... 394
 7.3.3 Biological samples .. . 394
 7.3.4 Statistical analysis .. . 394
7.4 Results .. 396
 7.4.1 Participant characteristics .. 396
 7.4.2 Determinants of anti-HHV-6 and anti-EBV IgG titres .. 398
 7.4.3 Anti-HHV-6 and anti-EBV IgG titres and relapse .. 399
 7.4.4 The prospective association between anti-HHV-6 and anti-EBV IgG and clinical disability
Table of Contents

progression ... 401

7.5 Discussion .. 402

 7.5.1 Anti-HHV-6 and anti-EBV IgG and relapse ... 402

 7.5.2 Anti-HHV-6 and anti-EBV IgGs, sex and MS course ... 403

 7.5.3 Anti-HHV-6 and anti-EBV IgG and disability .. 403

 7.5.4 Strengths and weaknesses ... 403

 7.5.5 Conclusion ... 404

7.6 Summary ... 405

7.7 Postscript .. 406

7.8 References ... 407

Appendix 7A. Supplemental Tables ... 409

Appendix 7B. Publication of “Anti-HHV-6 IgG titre significantly predicts subsequent relapse risk in multiple sclerosis” ... 413

Chapter 8. Serological HHV-6 reactivation is not associated with multiple sclerosis relapse 422

 8.1 Preface ... 422

 8.2 Introduction ... 423

 8.3 Methods .. 423

 8.4 Results ... 425

 8.5 Discussion .. 427

 8.6 Summary .. 431

 8.7 Postscript .. 432

 8.8 References ... 433

Chapter 9. Conclusion .. 435

 9.1 Geoepidemiology of MS .. 435

 9.2 Vitamin D in MS ... 438

 9.3 Human herpesviruses & MS clinical course ... 441

 9.4 Final conclusions of PhD .. 444

 9.5 Future directions ... 445

 9.6 References ... 448

Appendix A: Other publications during PhD ... 450
List of tables

Table 1.1. Season and clinical course 38
Table 1.2. UV exposure and clinical course 39
Table 1.3. Vitamin D intake: cases vs. controls 39
Table 1.4. Vitamin D treatment and clinical course 40
Table 1.5. Serum anti-EBV IgM and MS onset and clinical course 45

Appendix 1A Table 1. Season/month of birth and MS aetiology 75
Appendix 1A Table 2. UV exposure and MS aetiology 78
Appendix 1A Table 3. Serum 25(OH)D: cases vs. controls 79
Appendix 1A Table 4. Serum 1,25(OH)2D and MS aetiology 82
Appendix 1A Table 5. Serum 25(OH)D and clinical course 83
Appendix 1A Table 6. Serum 1,25(OH)2D and clinical course 85
Appendix 1A Table 7. Serum anti-HHV-6 IgG & MS onset and clinical course 86
Appendix 1A Table 8. Serum anti-EBV IgG and MS onset and clinical course 88
Appendix 1A Table 9. Serological marker of HHV-6 reactivation (anti-HHV-6 IgM) and MS onset and clinical course 91
Appendix 1A Table 10. Serological marker of EBV reactivation (anti-EBV-EA IgG) and MS onset & clinical course 92
Appendix 1A Table 11. Serum HHV-6 viral load and MS onset and clinical course 94
Appendix 1A Table 12. Serum EBV viral load and MS onset and clinical course 97

Methods note 2.1 Table A. Sex and birthplace-specific information provided by Hammond and colleagues for MS prevalence, and population data from Australian Bureau of Statistics 109

Table 2.2. Characteristics of 2001 and 2009 case samples. 116
Table 2.3. Age-specific prevalence by sex for Greater Hobart, 1961-2009. 117
Table 2.4. Age-specific prevalence by sex and by birthplace for Greater Hobart, 1961-2009, all prevalence values standardised to 1961 Greater Hobart population. 119

Table 3.1. Regional distribution of the 321 studies and their prevalence estimates. 158
Table 3.2. Estimated change in prevalence/100,000 per-degree-of-latitude showing the effect of adjustment for year of the study, use of systematic diagnostic criteria and inclusion of possible cases. 159
Table 3.3. Estimated change in prevalence/100,000 per-degree-of-latitude at increments of latitude. 162
Table 3.4. Region-specific associations between latitude and time-adjusted, age-standardised prevalence. 163
Table 3.5. Associations between latitude and time-adjusted age-standardised prevalence for the Italian, Western Europe and Europe regions, and with adjustment for HLA-DRB11 frequencies

Methods note 5.1 Table A. Distribution of entrance review, by sex and total.

Table 5.1. Characteristics of 145 participants with relapsing-remitting multiple sclerosis in the MS Longitudinal Study cohort.

Table 5.2. Determinants of serum 25(OH)D

Table 5.3. Univariable associations of selected factors and relapse rate/hazard, ‘as-measured’ analysis.

Table 5.4. Association between serum 25(OH)D levels and the hazard of a relapse, using the three different models

Table 6.1. Demographic and clinical characteristics of study participants

Table 6.2. Interactive effects of 25(OH)D and IFN-β usage on hazard of relapse for persons of RRMS course at study entry followed beyond one review. All analyses adjusted for age and stratified on sex and baseline EDSS category

Appendix 6A Table 1. Predictors of mean 25(OH)D, among all persons and restricted to persons of RRMS course at study entry

Appendix 6A Table 2. Regression coefficients for predictors of mean 25(OH)D, by IFN-β use during preceding inter-review interval and duration, overall and by season. All analyses adjusted for age and sex

Appendix 6A Table 3. Distribution of IFN-β therapy for all persons for whom BMI data was available (n=178)

Appendix 6A Table 4. Relationship between sun-exposure in the preceding 3-months and 25(OH)D levels, between those using IFN-β in preceding inter-review interval, overall and by season

Appendix 6A Table 5. Relationship between interferon-beta use and cutoff levels of 25(OH)D on hazard of relapse at varying levels of 25(OH)D

Table 7.1. Demographic and clinical characteristics of the total cohort and those with relapsing-remitting MS at study entry

Table 7.2. Association between baseline anti-HHV-6 IgG titres and the hazard of relapse for the full duration (Panel A), and restricted to first year and first six-months after measure of anti-HHV-6 IgG titres (Panel B).

Appendix 7A Table 1. Determinants of log4-transformed anti-HHV titres, all persons*. Analyses done using linear regression.

Appendix 7A Table 2. Determinants of log4-transformed anti-HHV titres for RRMS sample*. Anti-HHV-6, EBV-EBNA and EBV-VCA assessed by linear regression; anti-EBV-EA assessed by generalised linear estimator models.

Table 8.1. Characteristics of 198 persons with clinically-definite multiple sclerosis in MS Longitudinal Study cohort

Table 8.2. Distribution of titres of serum anti-HHV-6 IgG and IgM

List of figures
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Depiction of spinal cord abnormality likely to be MS, by Carswell</td>
<td>5</td>
</tr>
<tr>
<td>1.2</td>
<td>Depiction of spinal cord and pons abnormalities likely to be MS, by Carswell</td>
<td>5</td>
</tr>
<tr>
<td>1.3</td>
<td>Lithograph of CNS abnormalities likely to be MS, by Cruveilhier</td>
<td>6</td>
</tr>
<tr>
<td>1.4</td>
<td>Lithograph of CNS abnormalities likely to be MS, by Cruveilhier</td>
<td>6</td>
</tr>
<tr>
<td>1.5</td>
<td>MS prevalence in Australia: Hobart, Perth and Newcastle, 1961 and 1981</td>
<td>9</td>
</tr>
<tr>
<td>1.6</td>
<td>Basic neuronal structure</td>
<td>13</td>
</tr>
<tr>
<td>1.7</td>
<td>Neuroglial cells of the central nervous system</td>
<td>14</td>
</tr>
<tr>
<td>1.8</td>
<td>Types of MS.</td>
<td>19</td>
</tr>
<tr>
<td>1.9</td>
<td>2001 McDonald criteria</td>
<td>25</td>
</tr>
<tr>
<td>1.10</td>
<td>2005 Revision to the McDonald Criteria</td>
<td>26</td>
</tr>
<tr>
<td>1.11</td>
<td>2010 Revision to the McDonald criteria</td>
<td>28</td>
</tr>
<tr>
<td>2.1</td>
<td>A. Location of Tasmania within Australia and Greater Hobart within Tasmania</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td>B. Growth of the Greater Hobart Statistical Division (SD) over 1961-2009</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>Change in age/sex-distribution and populations of Greater Hobart, 1961-2009</td>
<td>107</td>
</tr>
<tr>
<td>Methods note 2.2 Figure A.</td>
<td>Australian-born prevalence by sex and birthplace, with 2001 and 2009 prevalence age-standardised to 1961 Greater Hobart population (solid line) and 1981 Greater Hobart population (dashed line).</td>
<td>113</td>
</tr>
<tr>
<td>Methods note 2.2 Figure B.</td>
<td>Overseas-born prevalence by sex and birthplace, with 2001 and 2009 prevalence age-standardised to 1961 Greater Hobart population (solid line) and 1981 Greater Hobart population (dashed line).</td>
<td>113</td>
</tr>
<tr>
<td>2.5</td>
<td>Prevalence by sex for Greater Hobart: 1961-2009, age-standardised to the 1961 Greater Hobart population</td>
<td>118</td>
</tr>
<tr>
<td>2.6</td>
<td>Prevalence by birthplace for Greater Hobart: 1961-2009, age-standardised to the 1961 Greater Hobart population†</td>
<td>120</td>
</tr>
<tr>
<td>2.7</td>
<td>Aggregate prevalence and prevalence by birthplace, by sex for Greater Hobart: 1961-2009, age-standardised to the 1961 Greater Hobart population†</td>
<td>121</td>
</tr>
<tr>
<td>2.8</td>
<td>Incidence rates for Greater Hobart by birthplace, by sex for 1971-81 and 2001-09 study periods</td>
<td>122</td>
</tr>
<tr>
<td>2.9</td>
<td>Prevalence sex ratio (female/male) for prevalence by birthplace and for the aggregate</td>
<td>123</td>
</tr>
</tbody>
</table>
List of figures

Discussion note 2.1 Figure A. Change in immigration to Tasmania, all persons, by global region of origin. 128
Discussion note 2.1 Figure B. Change in immigration to Tasmania, all persons, by European region of origin. 129
Discussion note 2.1 Figure C. Prevalence sex ratio (female/male), prevalence age-standardised to 2009 European population. 130
Methods note 3.1 Figure A. Log-transformed prevalence vs. prevalence year. 154
Methods note 3.1 Figure B. Log-transformed prevalence vs. prevalence year, excluding serial measures at same site. 155
Figure 3.1. World map showing the distribution of all prevalence estimates included in this meta-analysis. 157
Figure 3.2. Plot of time-corrected prevalence against latitude. 160
Figure 3.3. Region-specific gradients per degree-latitude for Australasia, Western Europe, and North America. 163
Appendix 3C. Figure 1. Map 1. World map showing the 10 study regions 252
Appendix 3C. Figure 2. Map 2. Inset area from Figure 1 showing Europe and its constituent study regions 256
Figure 4.1. Vitamin D metabolism 286
Figure 4.2. Pathway of 1,25(OH)2D in cell and gene regulation. 288
Figure 4.3. Vitamin D & acute infections. 296
Figure 4.4. Vitamin D & herpesvirus reactivation: Holmøy hypothesis. 297
Figure 4.5. Vitamin D & herpesvirus reactivation: consolidated 298
Figure 4.6. Vitamin D & childhood infections 299
Figure 4.7. Vitamin D & stress 300
Figure 4.8. Vitamin D & pregnancy 302
Figure 4.9. Vitamin D & smoking 304
Methods note 5.1 Figure A. MSL study protocol structure over reviews. 332
Figure 5.1. Annual variation in modeled 25(OH)D by month of year, 25(OHD in nmol/L. 340
Figure 5.2. Hazard ratios for category of 25(OH)D in 10 nmol/L increments where level of 25(OH)D is determined using the monthly model. 345
List of figures

Figure 5.3. Kaplan-Meir survival plots by category of 25(OH)D where level of 25(OH)D is determined by the monthly model. 346

Figure 6.1. Geometric mean serum 25(OH)D with 95% confidence intervals for persons reporting IFN-β medication use in the preceding interval and those not, overall and by season. 373

Figure 6.2. Geometric mean serum 25(OH)D with 95% confidence intervals for each level of reported sun-exposure for persons reporting IFN-β medication use in the preceding interval (thick line) and those not (thin line). 374

Figure 6.3. Kaplan-Meier survival plots for time to relapse 376

Figure 7.1. Kaplan-Meir survival plots by category of anti-HHV-6 IgG titre (labelled at end of each line). 401

Figure 8.1. Temporal relationship of relapse (arrows below x-axis) relative to titre of HHV-6 IgM (bars above x-axis) for subject 73 427
Papers directly arising from the work described in this thesis

Papers published

Chapter 2:

Chapter 3:

Chapter 4:

Chapter 5:

Chapter 6:

Chapter 7:

Other publications

Conference presentations arising from work in this thesis

Oral presentations

“Interferon-β is associated with higher 25-hydroxyvitamin D and both interact to modulate relapse risk in multiple sclerosis”, Multiple Sclerosis Research Association Progress in MS Research Conference, Melbourne, 26-28 Oct 2011.

Poster presentations

“Increasing levels of vitamin D are associated with decreased hazard of relapse in multiple sclerosis”, Multiple Sclerosis Research Association Progress in MS Research Scientific Conference, Sydney, 14-17 Oct 2009.
Young Investigator Award for best oral presentation at the *Multiple Sclerosis Research Association Progress in MS Research Conference*, Melbourne, 26-28 Oct 2011.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full term</th>
</tr>
</thead>
<tbody>
<tr>
<td>μg</td>
<td>Micrograms</td>
</tr>
<tr>
<td>1,25(OH)_2D</td>
<td>1,25-dihydroxyvitamin D</td>
</tr>
<tr>
<td>25(OH)D</td>
<td>25-hydroxyvitamin D</td>
</tr>
<tr>
<td>95% CI</td>
<td>95 percent Confidence Interval</td>
</tr>
<tr>
<td>ABS</td>
<td>Australian Bureau of Statistics</td>
</tr>
<tr>
<td>AHR</td>
<td>Adjusted Hazard Ratio</td>
</tr>
<tr>
<td>APC</td>
<td>Antigen Presenting Cell</td>
</tr>
<tr>
<td>BMI</td>
<td>Body Mass Index</td>
</tr>
<tr>
<td>CNS</td>
<td>Central Nervous System</td>
</tr>
<tr>
<td>CSF</td>
<td>Cerebrospinal fluid</td>
</tr>
<tr>
<td>DIS</td>
<td>Dissemination in space</td>
</tr>
<tr>
<td>DIT</td>
<td>Dissemination in time</td>
</tr>
<tr>
<td>EBNA</td>
<td>Epstein-Barr Nuclear Antigen</td>
</tr>
<tr>
<td>EBV</td>
<td>Epstein-Barr Virus</td>
</tr>
<tr>
<td>EBV-EA</td>
<td>Epstein-Barr Virus Early Antigen</td>
</tr>
<tr>
<td>EDS</td>
<td>Kurtzke Expanded Disability Severity Scale</td>
</tr>
<tr>
<td>EIA</td>
<td>Enzyme-linked Immunoassay</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme-linked Immunosorbent Assay</td>
</tr>
<tr>
<td>HERV</td>
<td>Human Endogenous Retrovirus</td>
</tr>
<tr>
<td>HHV</td>
<td>Human Herpesvirus</td>
</tr>
<tr>
<td>HHV-6</td>
<td>Human Herpesvirus 6</td>
</tr>
<tr>
<td>HLA</td>
<td>Human Leukocyte Antigen</td>
</tr>
<tr>
<td>HLA-DRB1</td>
<td>Most prevalent beta-subunit for Class II Major Histocompatibility Complex</td>
</tr>
<tr>
<td>HR</td>
<td>Hazard Ratio</td>
</tr>
<tr>
<td>IFA</td>
<td>Immunofluorescence Assay</td>
</tr>
<tr>
<td>IFN-β</td>
<td>Interferon beta</td>
</tr>
<tr>
<td>IgG</td>
<td>Immunoglobulin class G</td>
</tr>
<tr>
<td>IgM</td>
<td>Immunoglobulin class M</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>IQR</td>
<td>Interquartile Range</td>
</tr>
<tr>
<td>ISR</td>
<td>Incidence Sex Ratio</td>
</tr>
<tr>
<td>IU</td>
<td>International Units</td>
</tr>
<tr>
<td>Km</td>
<td>Kilometers</td>
</tr>
<tr>
<td>MET</td>
<td>Metabolic Equivalent of Task</td>
</tr>
<tr>
<td>MRI</td>
<td>Magnetic Resonance Imaging</td>
</tr>
<tr>
<td>MS</td>
<td>Multiple Sclerosis</td>
</tr>
<tr>
<td>MSFC</td>
<td>Multiple Sclerosis Functional Composite</td>
</tr>
<tr>
<td>MSL</td>
<td>Multiple Sclerosis Longitudinal Study</td>
</tr>
<tr>
<td>MSSS</td>
<td>Multiple Sclerosis Severity Score</td>
</tr>
<tr>
<td>nmol/L</td>
<td>Nanomoles per Liter</td>
</tr>
<tr>
<td>NSW</td>
<td>New South Wales</td>
</tr>
<tr>
<td>PBMC</td>
<td>Peripheral Blood Monocyte</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase Chain Reaction</td>
</tr>
<tr>
<td>PPMS</td>
<td>Primary-Progressive Multiple Sclerosis</td>
</tr>
<tr>
<td>PSR</td>
<td>Prevalence Sex Ratio</td>
</tr>
<tr>
<td>RCT</td>
<td>Randomised Controlled Trial</td>
</tr>
</tbody>
</table>
List of abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>RRMS</td>
<td>Relapsing-Remitting Multiple Sclerosis</td>
</tr>
<tr>
<td>RTI</td>
<td>Respiratory Tract Infection</td>
</tr>
<tr>
<td>SD</td>
<td>Standard Deviation</td>
</tr>
<tr>
<td>SED</td>
<td>Standard Erythemal Dose</td>
</tr>
<tr>
<td>SPMS</td>
<td>Secondary-Progressive Multiple Sclerosis</td>
</tr>
<tr>
<td>TAS</td>
<td>Tasmania</td>
</tr>
<tr>
<td>T_h1</td>
<td>Helper T-lymphocyte class 1</td>
</tr>
<tr>
<td>T_h2</td>
<td>Helper T-lymphocyte class 2</td>
</tr>
<tr>
<td>T_h17</td>
<td>Helper T-lymphocyte class 17</td>
</tr>
<tr>
<td>T_{reg}</td>
<td>Regulatory T-lymphocyte</td>
</tr>
<tr>
<td>WA (Australia)</td>
<td>Western Australia</td>
</tr>
<tr>
<td>UK</td>
<td>United Kingdom of Great Britain and Northern Ireland</td>
</tr>
<tr>
<td>USA</td>
<td>United States of America</td>
</tr>
<tr>
<td>UVR</td>
<td>Ultraviolet radiation</td>
</tr>
<tr>
<td>VCA</td>
<td>Epstein-Barr Virus Viral Capsid Antigen</td>
</tr>
<tr>
<td>VDBP</td>
<td>Vitamin D binding protein</td>
</tr>
<tr>
<td>VDR</td>
<td>Vitamin D receptor</td>
</tr>
<tr>
<td>VDRE</td>
<td>Vitamin D receptor element</td>
</tr>
<tr>
<td>vIL-10</td>
<td>viral interleukin 10</td>
</tr>
</tbody>
</table>
The appendix to this chapter has been removed for copyright or proprietary reasons.