THE GEOLOGY AND
MINERALISATION OF THE
E31 COPPER-GOLD PROSPECT,
GOONUMBLA, N.S.W.

BY

Mark C. Arundell

A thesis submitted as a partial fulfilment of the requirements of the Master of Economic Geology Degree.
University of Tasmania

May, 1998
This thesis may be made available for loan and limited copying in accordance with the *Copyright Act 1968*.
Declaration

This thesis contains no material which has been accepted for a degree or a diploma by the University or any other institution, except by way of background information and duly acknowledged in the thesis, and contains no material previously published or written by another person except where due acknowledgment is given.

Mark Arundell
ABSTRACT

The E31 copper-gold prospect is one of several porphyry or porphyry related prospects that occur adjacent to the Northparkes Mines site in the Goonumbla district of central N.S.W.

The prospect is hosted by trachyandesitic lavas, volcaniclastic breccias and volcaniclastic sandstones which have been intruded by a biotite monzonite at depth. Intrusive breccias are recognised associated with monzonite dykes intruding the volcanic sequence. A post mineralisation low angle north dipping fault terminates occurs adjacent to the contact of the monzonite with volcanics.

Three major stages of hydrothermal alteration and veining are recognised. Pre-mineralisation biotite alteration was the first phase. Extensive K-feldspar flooding and vein style alteration was associated with bornite and chalcopyrite mineralisation. Sericite-carbonate (± chlorite) alteration with pyrite ± chalcopyrite was associated with minor faults and shears. Regional low grade metamorphism, localised albitisation, and late stage carbonate veinlet alteration have also been recognised.

Detailed analysis of geochemical data indicates that Cu/Au mineralisation is associated with Ag, Te, Hg, and Se. An asymmetric Zn and Mn "halo" anomaly occurs in the hanging wall of the mineralisation which could be used as a vector to the mineralisation. Geochemical discrimination of lithological units has identified subtle differences between the monzonite above and below the low angle fault.

Analysis of sulphur isotopes of the E31 prospect indicates that the sulphur associated with the mineralisation was derived from an oxidised magmatic source. The range of the data for bornite and chalcopyrite at the E31 prospect are broadly similar to the values from E26N and E48 but overall the numbers are lower. Isotopic zonation may be present within the prospect but given the small size of the prospect and the limited number of samples collected, zonation has not been determined.
TABLE OF CONTENTS

ACKNOWLEDGMENTS

1. **INTRODUCTION**
 1.1 Aims
 1.2 Exploration and Mining History
 1.3 Previous Work
 1.4 Data Collection

2. **GEOLOGICAL SETTING**
 2.1 Introduction
 2.2 Regional Geology and Tectonic Setting
 2.3 Geology of the Goonumbla district
 2.3.1 Volcanics
 2.3.2 Intrusions
 2.3.3 Structure
 2.4 Mineralisation

3. **GEOLOGY OF THE E31 PROSPECT**
 3.1 Introduction
 3.2 Sedimentary rocks
 3.3 Volcanic Rocks
 3.4 Intrusives
 3.4.1 Biotite Monzonite (E31 stock)
 3.4.2 "Intrusive Breccia"
 3.4.2.1 Interpretation
 3.4.3 Other Intrusions
 3.5 Structure
 3.6 Interpretation of Geological Setting

4. **ALTERATION AND MINERALISATION**
 4.1 Introduction
 4.2 Biotite alteration
 4.3 K-feldspar alteration
9. CONCLUSIONS 77
10. REFERENCES 79
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Locality Map of the Goonumbla District</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Prospect Location Plan - Goonumbla District</td>
<td>2</td>
</tr>
<tr>
<td>2.1</td>
<td>Ordovician volcanic belts and interpreted intrusive centres.</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Tectonic subdivisions of New South Wales</td>
<td>9</td>
</tr>
<tr>
<td>2.3</td>
<td>Regional geology of the Goonumbla area</td>
<td>10</td>
</tr>
<tr>
<td>2.4</td>
<td>Geology of the Northparkes Mines area</td>
<td>11</td>
</tr>
<tr>
<td>3.1</td>
<td>Interpreted geology of the E31 prospect & drillhole location plan</td>
<td>15</td>
</tr>
<tr>
<td>3.2</td>
<td>E31 prospect - Section 10400E</td>
<td>16</td>
</tr>
<tr>
<td>3.3</td>
<td>E31 prospect - Section 10500E</td>
<td>17</td>
</tr>
<tr>
<td>3.4</td>
<td>E31 prospect - Section 10525E</td>
<td>18</td>
</tr>
<tr>
<td>3.5</td>
<td>E31 prospect - Section 10600E</td>
<td>19</td>
</tr>
<tr>
<td>3.6</td>
<td>E31 prospect - Section 10850E</td>
<td>20</td>
</tr>
<tr>
<td>3.7</td>
<td>Volcaniclastic Sandstone (E31D4 176.8m)</td>
<td>21</td>
</tr>
<tr>
<td>3.8</td>
<td>Volcanic Breccia (E31D6 176m)</td>
<td>21</td>
</tr>
<tr>
<td>3.9</td>
<td>Porphyritic trachyandesite (NSW6436 - E31D11 155.3m)</td>
<td>21</td>
</tr>
<tr>
<td>3.10</td>
<td>Biotite Monzonite (E31D3 210m)</td>
<td>23</td>
</tr>
<tr>
<td>3.11</td>
<td>Quartz Monzonite (E31D3 116.4m)</td>
<td>23</td>
</tr>
<tr>
<td>3.12</td>
<td>Biotite Adamellite (E31D10 100.8m)</td>
<td>23</td>
</tr>
<tr>
<td>3.13</td>
<td>Intrusive Breccia (E31D3 - 101m)</td>
<td>25</td>
</tr>
<tr>
<td>3.14</td>
<td>Intrusive Breccia (E31D11 132.8m)</td>
<td>25</td>
</tr>
<tr>
<td>3.15</td>
<td>Intrusive Breccia (GD1 179m)</td>
<td>25</td>
</tr>
<tr>
<td>3.16</td>
<td>Interpretation of ground magnetics</td>
<td>28</td>
</tr>
<tr>
<td>4.1</td>
<td>Biotite alteration (NSW6442 - E31D3 109.2m)</td>
<td>31</td>
</tr>
<tr>
<td>4.2</td>
<td>Pervasive K-feldspar alteration (E31D11 150m)</td>
<td>31</td>
</tr>
<tr>
<td>4.3</td>
<td>Vein style K-feldspar alteration (NSW6442 - E31D3 109.2m)</td>
<td>31</td>
</tr>
<tr>
<td>4.4</td>
<td>Sericite-carbonate alteration (NSW6440 - E31D7 62.1m)</td>
<td>34</td>
</tr>
<tr>
<td>4.5</td>
<td>Albite alteration (GPR2079 - E31D6 139.35m)</td>
<td>34</td>
</tr>
<tr>
<td>4.6</td>
<td>Carbonate veining (NSW6442 - E31D3 109.2m)</td>
<td>34</td>
</tr>
<tr>
<td>4.7</td>
<td>Section 10500E - Magnetic susceptibility data</td>
<td>39</td>
</tr>
<tr>
<td>4.8</td>
<td>Disseminated mineralisation replacing ferro-magnesian minerals (E31D11 150m)</td>
<td>40</td>
</tr>
<tr>
<td>4.9</td>
<td>Quartz-calcite veinlets (NSW6436 - E31D11 155.3m)</td>
<td>40</td>
</tr>
<tr>
<td>4.10</td>
<td>Segregations (E31D3 109m)</td>
<td>40</td>
</tr>
<tr>
<td>4.11</td>
<td>Coarse sulphide blebs (NSW6446 - E31D3 123m)</td>
<td>41</td>
</tr>
</tbody>
</table>
Figure 4.12 Chalcopyrite in sericite alteration zone (E31D3 108.4m) 41
Figure 4.13 Visible gold (NSW6445 - E31D3 120.7m) 41
Figure 5.1 E31D3. Elements indicating stratigraphic variation 46
Figure 5.2 E31D7. Elements indicating stratigraphic variation 47
Figure 5.3 E31D3. Variation in monzonite composition 48
Figure 5.4 E31D7. Variation in monzonite composition 49
Figure 5.5 Elements associated with Au mineralisation 52
Figure 5.6 Elements associated with Cu mineralisation and Sulphur 53
Figure 5.7 E31D3. Elements associated with Cu and Au mineralisation 54
Figure 5.8 E31D7. Elements associated with Cu and Au mineralisation 55
Figure 5.9 Discrimination diagrams for fractionation trends of magmas 58
Figure 5.10 K₂O v SiO₂ plot for Goonumbla and Wombin Volcanics and Intrusions 60
Figure 6.1 Sulphur isotope values - E31 prospect 63
Figure 6.2 Section 10500E - Sulphur isotope values - Bornite 64
Figure 6.3 Section 10500E - Sulphur isotope values - Chalcopyrite 65
Figure 6.4 E26 deposit - Sulphur isotope values - Bornite 66
LIST OF TABLES

Table 1.1 Northparkes Mines – Mineral Resources and Ore Reserves - June 1997 4
Table 4.1 Summary of Alteration events at the E31 prospect 37
Table 5.1 Summary of elemental correlations with Cu and Au 56
Table 6.1 Sulphur Isotope Analyses - E31 prospect 62
Table 6.2 Sulphur Isotope Analyses - E48 Deposit 68
Table 7.1 Comparison of E31 prospect with E22, E26, E27 & E48 deposits 71

LIST OF APPENDICES

Appendix 1 Data Location, Drilling Techniques and Orientation, Sample Preparation and Assaying Techniques, Magnetic Susceptibility Data and Data Storage
Appendix 2 Thin section descriptions
Appendix 3 Diamond drillhole logs
Appendix 4 Magnetic susceptibility logs
Appendix 5 Drillhole Assay results
Appendix 6 Sulphur Isotope results