SELECTED PORPHYROIDAL AND
GRANITIC ROCKS AT TENNANT CREEK,
NORTHERN TERRITORY

by

DAVID McPHERSON DUNCAN, M.Sc., B.Sc. (Hons).
(University of Aberdeen)

A thesis submitted in partial fulfilment of the
requirements for the degree of

Doctor of Philosophy

UNIVERSITY OF TASMANIA
HOBART

August 1970
This thesis contains no material which has been accepted for the award of any other degree or diploma in any University and, to the best of my knowledge and belief, contains no copy or paraphrase of material previously published or written by another person, except where due reference is made in the text of the thesis.

Daniel M.P. Duncan

August 1970
TABLE OF CONTENTS

ABSTRACT

ACKNOWLEDGEMENTS

<table>
<thead>
<tr>
<th>CHAPTER 1</th>
<th>- INTRODUCTION</th>
<th>Page No.</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHAPTER 2</td>
<td>- GEOLOGICAL ENVIRONMENT OF THE TENNANT CREEK AREA</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>CHAPTER 3</td>
<td>- THE GREAT WESTERN PORPHYROID</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

1. THE WARREGO AREA | 11 |

General relationships of the rocks | 12 |
Correlation of sections | 13 |
The Warrego Porphyroid | 14 |

PETROGRAPHY | 14 |

MINERALOGY OF MEGACRYST PHASES | 21 |

1. POTASSIUM FELDSPAR | 21 |
2. PLAGIOCLASE | 40 |
3. QUARTZ | 44 |
4. BIOTITE | 45 |

Contact relation | 46 |
Associated rocks | 48 |

2. THE INSET B AREA | 53 |

The Inset B Porphyroid | 54 |
The sediments | 54 |
Various aspects of the Sediments | 56 |

Contact Relationships of the Porphyroidal and Sedimentary Rocks | 57 |
3. THE BLACK EYE AREA

4. THE GREAT WESTERN AREA

Metamorphic grade

Nature of the Great Western Porphyroid (s.l.)

CHAPTER 4 - THE CREEK BED PORPHYROID

PETROGRAPHY

MINERALOGY OF MEGACRYST PHASES

1. POTASSIUM FELDSPAR

2. PLAGICLASE

3. QUARTZ

4. BIOTITE

Nature of the Creek Bed Porphyroid

CHAPTER 5 - CHEMISTRY OF THE QUARTZ-FELDSPAR PORPHYROIDS

CHAPTER 6 - CHEMISTRY OF SOME ASSOCIATED ROCKS

CHAPTER 7 - The Station Hill Granite

The Petrography, Mineralogy and Chemistry of the Station Hill Granites

THE "PORPHYRITIC" GRANITE (phase A)

1. Potassium feldspar

2. Plagioclase

3. Quartz

4. Biotite
III

OTHER GRANITES (phase A?, B and C) 105

Petrographic features relating to level of intrusion of the Station

Hill granite 107

CHEMISTRY 119

CHAPTER 8 - PETROGENESIS OF THE QUARTZ-FELDSPAR PORPHYROIDS 121

ORIGIN OF MEGACRYSTS 121

Textural considerations

Structural State of the Feldspars 133

Composition 134

Origin of the Embayments and Cavity Textures 136

INTERPRETATION OF COMPOSITIONS 142

Relation of the quartz-feldspar porphyroids to the synthetic granite system 142

The CaO content of the quartz-feldspar porphyroids 144

1). Magmatic processes 145

2). Mode of eruption 148

3). Secondary processes 148

Associated rocks 154

SOME TRACE ELEMENT RELATIONSHIPS 155
IV

COMPOSITIONAL FEATURES OF THE
FELDSPARS AND THEIR SIGNIFICANCE 157
STRUCTURAL STATE OF FELDSPARS 168

CHAPTER 9 - PETROGENESIS OF GRANITIC ROCKS
AND THEIR BEARING ON THE ORIGIN
OF THE QUARTZ–FELDSPAR PORPHYROIDS 175
PETROGENESIS OF STATION HILL
GRANITES 175

RELATION AND COMPARISON OF THE
GRANITES AND THE QUARTZ–FELDSPAR
PORPHYROIDS 191

ORIGIN OF ACID MAGMA 198

CHAPTER 10 - SUMMARY AND CONCLUSIONS
APPENDIX

REFERENCES
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>Succession of Geological Events in the Tennant Creek Area.</td>
<td>6</td>
</tr>
<tr>
<td>Table 2</td>
<td>Modal analyses of megacrysts in porphyroidal rocks at Tennant Creek.</td>
<td>18</td>
</tr>
<tr>
<td>Table 3</td>
<td>Optical and X-ray data on individual potassium feldspar megacrysts from rocks at Tennant Creek.</td>
<td>31</td>
</tr>
<tr>
<td>Table 4</td>
<td>Major element and selected trace element compositions in potassium feldspars in porphyroidal and granitic rocks at Tennant Creek.</td>
<td>40</td>
</tr>
<tr>
<td>Table 5</td>
<td>Optical and X-ray data on plagioclase from the Warrego Porphyroid.</td>
<td>43</td>
</tr>
<tr>
<td>Table 6</td>
<td>Optical and X-ray data on plagioclase from the Black Eye Porphyroid.</td>
<td>43</td>
</tr>
<tr>
<td>Table 7</td>
<td>Ba (ppm) in coexisting feldspars in porphyroids and granites.</td>
<td>45</td>
</tr>
<tr>
<td>Table 8</td>
<td>Sr (ppm) in coexisting feldspars in porphyroids and granites.</td>
<td>45</td>
</tr>
<tr>
<td>Table 9</td>
<td>Optical and X-ray data on plagioclase from the Creek Bed Porphyroid.</td>
<td>83</td>
</tr>
<tr>
<td>Table 10</td>
<td>Major element compositions and molecular norms of Tennant Creek rocks - quartz-feldspar porphyroids.</td>
<td>86</td>
</tr>
<tr>
<td>Table 11</td>
<td>Some trace elements and selected element ratios in Tennant Creek rocks.</td>
<td>87</td>
</tr>
<tr>
<td>Table 11(a)</td>
<td>Average compositions of quartz-feldspar porphyroids, volcanic greywackes and ashes compared with the compositions of some sedimentary rocks.</td>
<td>90</td>
</tr>
<tr>
<td>Table 11(b)</td>
<td>Quartz-feldspar porphyroids, volcanic greywackes and ashes compared with some sedimentary rocks with respect to SiO$_2$, Al$_2$O$_3$, K$_2$O, Na$_2$O and CaO.</td>
<td>90</td>
</tr>
</tbody>
</table>
Table 12. Major element compositions and molecular norms of Tennant Creek rocks. 90
Table 14. Composition of Lamprophyres. 92
Table 14(a) Redistribution of K, Na and Ca in porphyroids. 92
Table 15 Optical and X-ray data on plagioclase from the "porphyritic" Station Hill Granite. 105
Table 16. Petrographical and mineralogical summaries of subsidiary granite phases in the Station Hill area. 106
Table 17. Optical data on plagioclase from enclaves in the Station Hill Granite. 119
Table 18. Major element compositions and molecular norms of Tennant Creek rocks - Station Hill granites. 109
Table 19. Range of some trace element values in Tennant Creek rocks. 156
Table 20. Sodium content of coexisting feldspars in porphyroids and granites. 163
Table 21. Potassium Feldspar Megacrysts - Selected Element Ratios. 164

APPENDIX
Table I. Modal analyses of megacrysts in porphyroids. 3
Table II. Maximum theoretical variances for megacryst counts. 3
Table III. Statistical comparison of two pairs of modal analyses of Warrego quartz-feldspar porphyroids. 3
Table IV. Approximate modal values of foliated, "porphyritic" Station Hill granite (values in volume percent). 4
Table V. Comparison between approximate modal analyses (M) and the Barth mesonorms (N) for foliated, "porphyritic" Station Hill granite. 4
Table VI. Replicate measurements on the optic axial angle, 2Vx, of potassium feldspar and plagioclase using a 5-axes Leitz universal stage employing the orthoscopic procedure.

Table VII. Means and standard deviations of optic axial angles (2Vx) of potassium feldspars from different rock types.

Table VIII. Twin laws in potassium feldspar megacrysts from Tennant Creek.

Table IX. Refractive index, Nx, of some analysed potassium feldspars.

Table X. Variation in obliquity, Δ, within single hand specimens.

Table XI. Comparison of potassium feldspar bulk compositions, analysed by two X-ray methods, averaged within each rock type.

Table XII. Analytical conditions for major elements in X-ray fluorescence spectrography.

Table XIII. Analytical conditions for trace elements in X-ray fluorescence spectrography.
VIII

LIST OF FIGURES

Figure 1. Geological sketch map prepared by Geopeko Ltd. showing the distribution of the main porphyroidal and granitic rocks to the north of Tennant Creek.

Figure 2. Geological sketch map prepared by Geopeko Ltd. showing the outline of the Great Western Porphyriddy (s.1.) on which are plotted structural data and the areas investigated in this study.

Figure 3. Geological sketch map prepared by Geopeko Ltd. showing the basis for the correlation of the Great Western Porphyriddy (s.1.)

Figure 4. Distribution of rock types and selected specimens in some drill holes in the Warrego area.

Figure 5. Diagrammatic representation of optical and X-ray measurements carried out on individual potassium feldspar megacrysts from rocks at Tennant Creek.

Figure 6. Partial X-ray diffractogram traces of single potassium feldspar megacrysts from the Warrego Porphyriddy.

Figure 7. Order-disorder relationships in plagioclases of the porphyroidal rocks as determined by optical measurements - the orientation of the optical indicatrix.

Figure 8. Order-disorder relationships in plagioclases of the porphyroidal rocks as determined by optical measurements - the optic axial angle.

Figure 9. Order-disorder relationships in plagioclases of the porphyroidal rocks as determined by X-ray diffraction methods.

Figure 10. Geological sketch map and orientation of structures in the Inset B area.
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Detailed geological map of Inset C area prepared by plane tabling.</td>
<td>59</td>
</tr>
<tr>
<td>12</td>
<td>Detailed geological map of Inset F area prepared by gridding and, in part, re-drawn from photographs.</td>
<td>60</td>
</tr>
<tr>
<td>13</td>
<td>Detailed geological map of Inset D area prepared by plane tabling.</td>
<td>61</td>
</tr>
<tr>
<td>14</td>
<td>Detailed geological map of Inset G area prepared by gridding.</td>
<td>63</td>
</tr>
<tr>
<td>15</td>
<td>Detailed geological map of the Creek Bed Porphyroid prepared by plane tabling.</td>
<td>78</td>
</tr>
<tr>
<td>16</td>
<td>Relationship of alkalies in some Tennant Creek rocks.</td>
<td>87</td>
</tr>
<tr>
<td>17</td>
<td>Sketch map of the Tennant Creek Granite Complex (along with the locality of specimens used in this investigation) in the Station Hill area based on the B.M.R. Map Sheet 238.</td>
<td>94</td>
</tr>
<tr>
<td>18</td>
<td>Diagrammatic sketches of textures in plagioclase from granitic rocks at Tennant Creek.</td>
<td>104</td>
</tr>
<tr>
<td>19</td>
<td>Normative plots of selected Tennant Creek rocks on composite diagrams of the systems Q-Or-Ab and An-Or-Ab.</td>
<td>143</td>
</tr>
<tr>
<td>20</td>
<td>Calculated compositions of porphyroidal groundmasses on a diagram of the system Q-Or-Ab.</td>
<td>144</td>
</tr>
<tr>
<td>21</td>
<td>Potassium-rubidium relationships in some rocks and potassium feldspars at Tennant Creek.</td>
<td>157</td>
</tr>
<tr>
<td>22</td>
<td>Compositional variations in potassium feldspars from porphyroidal and granitic rocks at Tennant Creek.</td>
<td>158</td>
</tr>
<tr>
<td>23</td>
<td>The compositional pattern in terms of Or-Ab-An of coexisting feldspars in some Tennant Creek rocks.</td>
<td>159</td>
</tr>
</tbody>
</table>
Figure 23(a) Selected trace element relationships in potassium feldspars in some Tennant Creek rocks

Figure 24. The strontium content of coexisting feldspars in porphyroidal and granitic rocks at Tennant Creek.

Figure 25. Potassium feldspar megacrysts from Tennant Creek rocks plotted on a modified version of Tuttle's (1952) classification diagram.

Figure 26. Histograms of the average optic axial angle values (2Vx) of potassium feldspar megacrysts from Tennant Creek rocks (each plot consisting of an average of five determinations).

APPENDIX.

Figure I. Classification of the Station Hill Granite (phase A) according to the modal values of quartz, potassium feldspar and plagioclase plotted on a diagram after Streckeisen (1967).

Figure II. Graphical comparison of the bulk composition of some potassium feldspars determined by two X-ray methods (each plot representing the feldspar from an individual rock specimen).
<table>
<thead>
<tr>
<th>Plate</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1(a)&(b)</td>
<td>Specimens of the Warrego Porphyroid.</td>
<td>15</td>
</tr>
<tr>
<td>2(a),(b)&(c)</td>
<td>Relict vitroclastic textures in the recrystallized groundmasses of the Warrego Porphyroid.</td>
<td>20</td>
</tr>
<tr>
<td>3(a),(b)&(c)</td>
<td>Relict volcanic textures in the recrystallized groundmasses of the Warrego Porphyroid.</td>
<td>21</td>
</tr>
<tr>
<td>4(a),(b)&(c)</td>
<td>Potassium feldspar megacrysts in the Warrego Porphyroid.</td>
<td>23</td>
</tr>
<tr>
<td>5(a),(b)&(c)</td>
<td>Potassium feldspar megacrysts in the Warrego Porphyroid.</td>
<td>23</td>
</tr>
<tr>
<td>6(a),(b)&(c)</td>
<td>Potassium feldspar megacrysts in core specimens of the Warrego Porphyroid.</td>
<td>23</td>
</tr>
<tr>
<td>7(a)</td>
<td>Embayed megacrysts in the Black Eye Porphyroid.</td>
<td>23</td>
</tr>
<tr>
<td>7(b)</td>
<td>Detail of cavities in potassium feldspar, Warrego Porphyroid.</td>
<td>23</td>
</tr>
<tr>
<td>7(c)</td>
<td>As above.</td>
<td>23</td>
</tr>
<tr>
<td>8(a),(b)&(c)</td>
<td>Relict bubble textures in feldspar megacryst.</td>
<td>27</td>
</tr>
<tr>
<td>9(a) & (b)</td>
<td>Relict textures in feldspar megacryst cavities.</td>
<td>27</td>
</tr>
<tr>
<td>10(a) & (b)</td>
<td>Composite plagioclase megacrysts -possibly due to synneusis-in the porphyroids.</td>
<td>41</td>
</tr>
<tr>
<td>11(a) & (b)</td>
<td>Quartz megacrysts with embayments and cavities in the Warrego Porphyroid.</td>
<td>45</td>
</tr>
<tr>
<td>12 (a) & (b)</td>
<td>Contact features of the Warrego Porphyroid and country rocks as recorded in core specimen.</td>
<td>47</td>
</tr>
</tbody>
</table>
Plate 13(a),(b)&(c) Metamorphosed wall rocks of the Warrego Porphyroid - thin section.

Plate 14 (a) Quartz Porphyroids from the Warrego area.

14 (b) Vitroclastic groundmass of quartz porphyroid from the Warrego area.

14 (c) Fabric of lamprophyre from the Warrego area.

Plate 15 (a) Well-preserved ash texture, Inset B Porphyroid.

15 (b) & (c) Intermixing of porphyroidal and wall rock material on a hand specimen scale.

Plate 16(a),(b)&(c) Associated sediments of the Inset B area.

Plate 17(a) & (b) General aspect of porphyroidal and sedimentary intermixing, Inset B.

Plate 18 (a) & (b) Hand specimen representatives of quartz-feldspar porphyroids.

Plate 19(a),(b)&(c) Textural details of the quartz-feldspar porphyroids.

Plate 20(a),(b)&(c) Granites in the Station Hill area.

Plate 21(a),(b)&(c) Fabric of main, phase A Station Hill granite.

Plate 22(a),(b)&(c) Potassium feldspar megacrysts in the main, phase A Station Hill granite.

Plate 23(a),(b)&(c) Potassium feldspar megacrysts in the main, phase A Station Hill granite.

Plate 24(a),(b)&(c) Detail of quartz vermicules in potassium feldspar megacrysts of the main, phase A Station Hill granite.
Plate 25 (a) & (b) Plagioclase textures in the main, phase A Station Hill granite.

Plate 26(a),(b)&(c) Enclaves of main, phase A Station Hill granite.

Plate 27(a),(b)&(c) Enclave megacrysts of potassium feldspar and plagioclase.
The Lower Proterozoic sedimentary succession of the Warramunga Group, Northern Territory, Australia is composed essentially of shales, greywackes and conglomerates with minor haematite shales and cherts having an estimated total thickness of 25,000 feet. At Tennant Creek, the lower part of the succession contains conformable horizons, discontinuous lenses, dykes and other isolated bodies of porphyroidal rocks. The rocks show varying degrees of recrystallization and deformation due to an incipient greenschist facies regional metamorphism.

Two porphyroidal bodies have been studied in detail and are generally similar with respect to petrography, mineralogy and chemistry. They contain between 28% and 45% of megacrysts of quartz, potassium feldspar, plagioclase and minor biotite set in recrystallized, dominantly quartzo-feldspathic groundmasses in which relict textural patterns indicate the former presence of close-packed shards, perlitic cracks and possible amygdaloidal patches and identify the porphyroids as volcanic pyroclastics. The Great Western Porphyroid forms a grossly conformable, perhaps composite, horizon at least twelve miles in length and up to 1,500 feet thick and is of ash-flow origin. The Creek Bed Porphyroid is half a mile long, several tens of feet thick and appears to be a dyke.

The shape of the embayments and cavities, extensively developed in the quartz and potassium feldspar megacrysts, appear different from the more regular skeletal or dendritic patterns which are known to result from irregular growth. The close association between curved grain perimeters and embayments suggests that the two are genetically connected and is consistent with weak magmatic corrosion of euhehedral grain habits resulting
in rounded corners with associated, selective, internal corrosion producing the embayments and cavities. The presence of Carlsbad and Baveno twinning in the potassium feldspar further supports an igneous derivation for these mineral grains.

Optical and X-ray data indicate that both the potassium feldspar and plagioclase are in a highly-ordered structural condition. In conformity with their structural states, the compositions of the potassium feldspar and plagioclase are consistent with recrystallization at temperatures typical of greenschist facies metamorphic, rather than magmatic, conditions.

The major element compositions of the porphyroids are similar to those of calc-alkaline rhyolites apart from a variable alkali ratio and a low CaO content due to the redistribution of K, Na and Ca, probably as a result of hydrothermal alteration.

The petrographic, mineralogical and chemical similarity of the porphyroids to high-level granites (and selected enclaves) of the neighbouring Tennant Creek Complex suggests a genetic association.

Compositional and structural data on the feldspars are compared throughout the various environments of porphyroid, granite and enclave. The major element composition of the potassium feldspar and the structural states of both the potassium feldspar and the plagioclase are generally similar in the different rock types. This is a result of secondary processes of hydrothermal alteration and/or metamorphic recrystallization, which make it impossible to correlate primary order-disorder and compositional features with environment of occurrence. Delicate, oscillatory zoning preserved in the andesine from the different rock types reveals that the similar plagioclase composition is an original magmatic characteristic. It is concluded
that the close similarity of the Rb, Sr and Ba abundances in the potassium feldspar from the various environments is a consequence mainly of the generally similar abundances of these elements in the porphyroid, granite and enclave bulk compositions.
ACKNOWLEDGEMENTS.

I am indebted to my supervisor Dr. J. C. van Moort for advice, encouragement and constructive criticism at all stages of this investigation.

I would also like to acknowledge the assistance received during the field work from Mr. J. Elliston, Executive Geologist, Peko-Wallsend Ltd., whose enthusiastic discussion and direction on field excursions proved invaluable in appreciating many aspects of the occurrence and field relations of the porphyroïd rocks. I also thank Peko-Wallsend Ltd. who, through Mr. J. Elliston provided vehicles for field work, subsidised accommodation, defrayed travelling expenses and allowed full access to company material and core specimens without which this investigation could not have been pursued. I also express my thanks to Professor S.W. Carey who suggested this research project and Professor T.F.W. Barth for some proposals on methods of investigation of the porphyroidal rocks.

Members of staff and colleagues of the Geology Department, University of Tasmania contributed useful discussion and in particular I would like to thank Mr. R. Ford, Geology Department for advice on all aspects of X-ray analysis, Dr. D.I. Groves, Tasmanian Mines Department for advice on the techniques of X-ray fluorescence spectrography, and Mr. C.E. Gee for the use
of computer programmes for absorption corrections of major and trace constituents in X-ray fluorescence spectrography and also for providing a sample of the Mirarrmina Complex, Arnhem Land.

I am grateful to Dr. S.R. Taylor for allowing me to use the arc spectrograph in the Department of Geophysics and Geochemistry, A.N.U. and to Mrs. M. Kaye who directed and supervised the determinations.

I would also like to express my appreciation for the large area scans by an electron-probe analyser and X-ray photographs taken by the Cambridge Instrument Company, Ltd., England.

Miss S Hill kindly determined ferrous iron in the whole-rock analyses.

I appreciate the work of Mr. W. Petersen who did most of the preparation of the thin sections used in this investigation.

I also thank my wife, Sally, who provided assistance in the field, performed the draught typing and actively helped in the preparation of this thesis.

During the period of this research, I held a scholarship from the Reserve Bank of Australia and latterly the University of Tasmania both of which I gratefully acknowledge.