Non-Linear Tomographic Inversion of Active Source Seismic Data: An Investigation of the Basement Structure of Eastern Tasmania

Thomas Lorimer

November 2007

Supervisors: Dr Anya M. Reading and Dr Michael J. Roach

Submitted in partial fulfilment of the requirements for the Degree of Bachelor of Science with Honours
Abstract

A genetic algorithm has been developed for the inversion of seismic traveltime data and applied to a tomographic investigation of central-eastern Tasmania. The investigation used four shots and twelve stations across a 100 km east-west section of the post Devonian cover of the Tasmania Basin. This area lies across the inferred but poorly understood contact between the Eastern and Western Tasmanian Terranes, which has proven difficult to image in previous geophysical studies.

The genetic algorithm developed in this project is portable across all parallel and non-parallel Unix-based computing platforms, and interfaces with an existing, advanced, fast marching forward model code. The algorithm was applied both at low resolution with subsequent model refinement by a subspace inversion method in a two-step approach, and at higher resolution to directly invert the data using a one-step approach. The one-step implementation yielded superior exploration of the model space, and sufficient exploitation of the possible solutions when applied to the sparse noisy data acquired during the controlled source investigation. This demonstrates the viability of a one-step Monte-Carlo approach to seismic traveltime tomography in cases of sparse data coverage.

The results of the inversions show a high velocity anomaly at 6 km depth and 147.4 degrees longitude, coincident with a long-wavelength magnetic anomaly, and is interpreted as an ultramafic unit of possible oceanic crustal affinity. This supports both thick and thin-skinned tectonic models with oceanic crust beneath the Eastern Tasmanian Terrane, though the thin-skinned scenario is preferred on the basis of existing gravity data. A model is suggested in which this oceanic unit is part of the allochthonous boninite-tholeiite stack overlying the Western Tasmanian Terrane.
Declaration

This thesis contains no material which has been accepted for the award of any other degree or diploma in any tertiary institution, and to the best of my knowledge and belief contains no material previously published or written by any other person, except where due reference is made in the text of the thesis.
Contents

1. Introduction 1

2. Pre-existing data and interpretations .. 4
 2.1 Preface: relationship to mainland Australia 4
 2.2 Geological Data ... 5
 2.2.1 Western and Eastern Tasmanian Terranes 5
 2.2.2 Devonian granitoids 8
 2.2.3 Tasmania Basin .. 8
 2.2.4 Drill hole data ... 8
 2.3 Geophysical Data ... 9
 2.3.1 Potential field data 9
 2.3.2 Seismic data .. 11
 2.3.3 Electromagnetic data 13
 2.4 Tectonic models .. 14
 2.4.1 Tectonic models: Tyennan and Tabberabberan Orogenies 14
 2.5 Summary ... 19

3. The Forward Problem ... 20
 3.1 Formulation ... 20
 3.2 Solution ... 22
 3.2.1 Lagrangian solution methods 23
 3.2.2 Eulerian solution method 24
 3.3 Approach used in this experiment 27

4. The Inverse Problem ... 29
 4.1 Parametrisation .. 29
4.2 Formulation ... 30
4.2.1 Non-linearity .. 31
4.2.2 Under-determination ... 31
4.2.3 Vector norms and the misfit functional 32
4.3 Linearised solution of the inverse problem:
 gradient methods ... 33
 4.3.1 Regularisation .. 34
 4.3.2 The iterative scheme ... 36
 4.3.3 Summary ... 40
4.4 Fully non-linear solution of the inverse
 problem: Monte-Carlo methods 40
 4.4.1 Genetic algorithms .. 42
 4.4.2 Other fully non-linear methods 45
4.5 Approach used in this experiment 45

5 Data and Method ... 46
5.1 Instrument deployment and shot firing 46
 5.1.1 Shots and timing .. 46
 5.1.2 Instruments ... 48
5.2 Data processing ... 48
 5.2.1 Arrival picking ... 49
 5.2.2 Traveltime residuals ... 50
5.3 Solving the forward problem 53
5.4 Solving the inverse problem 53
 5.4.1 Genetic algorithm used in this experiment 54
 5.4.2 Subspace method ... 58
 5.4.3 Inversion process .. 58

6 Results ... 60
6.1 Preface .. 60
6.2 Synthetic testing .. 61
 6.2.1 Synthetic testing of the genetic algorithm 61
 6.2.2 Synthetic testing of the subspace method 65
6.3 Two-step inversion ... 67
J Attached DVD 105
List of Figures

1.1 Simplified geology and location map for this project, modified after Seymour et al. (2006). .. 3

2.1 Tectonic elements of mainland Tasmania, modified after Seymour and Calver (1995). .. 5

2.2 The Bouguer gravity anomaly and total magnetic intensity for Tasmania. Both datasets have been upward continued and gradient enhanced in a northeast-southwest direction by the author to highlight the feature known as the Tiers Lineament (Leaman, 1994) marked in the figure by A-B and D-E. C-B shows the western extent of Devonian granitoid emplacement at depth. Feature F is the Sandy Cape magnetic anomaly (see text). No colourscale has been included, as the images are greyscale and gradient enhanced. Qualitatively, higher values correspond to lighter shades. .. 10

2.3 Schematic cross section of Tasmania at the end of the Tyennan Orogeny after Crawford et al. (2003). Note the boninitic forearc emplaced over continental crust in the east (right). .. 15

2.4 Schematic cross section of the inferred crustal structure beneath the Tasmania Basin from (Drummond et al., 2000). 16

2.5 Schematic cross section of Devonian deformation in the Mathinna Supergroup and thrust faulting at the contact with the Western Tasmanian Terrane from Patison et al. (2001). 17

2.6 Schematic cross section of the structural relationships between rocks of the Eastern and Western Tasmanian Terranes at the end of the Tabberabberan Orogeny from Reed (2001). 18
LIST OF FIGURES

2.7 Schematic cross section of the structural relationships between rocks of the Eastern and Western Tasmanian terranes at the end of the Tabberabberan Orogeny from Reed et al. (2002). 19

3.1 A simple case demonstrating the difficulties involved in determining first arrival traveltimes using Lagrangian methods. The model consists of two layers, each with one dimensional velocity gradient, where the lower layer is faster. Ray path (a) is a true ray path, but ray path (b), which travels through the higher velocity lower layer, is the first arriving ray path. Raypath A corresponds to a local minimum, while raypath B is the global minimum. For more complex velocity structures this problem is far from trivial. 24

3.2 Travel time grid used by Vidale (1988) taken from Rawlinson and Sambridge (2003). The calculation begins at the source point (A) and expands outwards. 24

3.3 The downwind fast marching method. Traveltimes are calculated in the narrow grey band, and the grid point with the lowest traveltme is added to the accepted values. The narrow grey band is then updated, and the process repeated. From Sethian and Popovici (1999). 26

5.1 Orica truck placing dense emulsion in the drill hole (left) and hole after stemming with 14 mm aggregate (right). 47

5.2 The aftermath of a well coupled shot from this experiment (left) and the poorly coupled quarry blast (right). 48

5.3 A typical station deployment from this survey. Suitably camouflaged and animal proof. The GPS antenna has been placed some distance away at a location with good satellite coverage, and rocks and branches aid insulation of the recorder box. 49

5.4 An example of a high certainty P (EPU1) and a lower certainty S (ESU2) arrival time pick using the vertical (top) and radial (bottom) components of the signal. The signal was recorded at near offset and is very strong. Some later arrivals were picked (T7, T8), but not identified. 50
5.5 An example of a lower certainty P (EPU2) and a low certainty S (ESU2) arrival time pick using the vertical (top) and radial (bottom) components of the signal. The signal was recorded at far offset and shows significant noise. .. 51

5.6 Histograms of P-wave and S-wave arrival time residuals from 2 layer velocity structure after Drummond et al. (2000). 51

5.7 Plots of P-wave and S-wave arrival time residuals from 2 layer velocity structure after Drummond et al. (2000). Positive residuals represent fast arrivals, negative residuals represent slow arrivals. 52

6.1 A selection of synthetic test results. The histograms on the left show the convergence of the algorithm, while the 3D histograms on the right show the distribution of velocities at all the velocity nodes, for models with data misfit < 1.5 seconds. See section 5.4.1 for details. 63

6.2 Synthetic velocity profile and calculated raypaths used to generate the synthetic dataset. ... 64

6.3 A selection of recovered velocity profiles and calculated raypaths obtained during testing. These velocity profiles were generated by selecting the modal velocity node values from the recovered velocity distribution histograms. All models have similar data misfit, but some have unrealistic raypaths (see text for details). Where the ray paths are realistic, a reasonable reproduction of the velocity model is obtained. 64

6.4 Synthetic testing of the subspace inversion method using checkerboard velocity models. Checkerboards A1 and B1 are well resolved in A2 and B2 respectively. C1 is poorly resolved in C2. Channeling of the raypaths between high velocity regions in B1 and C1 makes accurate reconstruction very difficult. See text for discussion of features indicated by lower case letters. ... 66

6.5 Synthetic test results showing the smearing effect of the subspace method on a thin low velocity layer at the top of the model. 66
6.6 Low resolution genetic algorithm results. The histograms on the left show the convergence of the algorithm, while the 3D histograms on the right show the distribution of velocities at the velocity nodes, across all acceptable models. The red line on the misfit histogram (left) indicates a conservative upper bound for the acceptable model misfit. In the generation of starting models for the subspace method, (b) is a well constrained velocity value whose secondary value was kept constant, while (a) is well constrained but its secondary value was altered (see text for details). This had a significant effect on the results of the subspace method.

6.7 Model classes from genetic algorithm results selected as starting models for the subspace inversion by sampling velocity node values in Figure 6.6 (see text). Models A to D have misfit < 3 seconds, while models E to H have misfit < 3.4 seconds. See text for discussion of near surface ray paths in A to D (a). Models E to H show significantly more shallow ray paths (a) than models A to D, and generally have less crossing raypath coverage. There appears to be a tradeoff in the resolved ray-paths between the combination (b),(c),(d) and the combination (b),(c). In models F, G, H, a high-low velocity pair distorts the ray path (e).

6.8 The sample of possible classes of models from genetic algorithm results after refinement with the subspace inversion method.

6.9 Recovered profile using the subspace inversion method from a constant velocity gradient starting model. The starting model varied from 4 km/s at the top, to 6.5 km/s at the bottom. The recovered model is similar in character to models A to D (figure 6.8).

6.10 Histograms of generation data misfit for the high resolution genetic algorithm. The red line represents a conservative upper bound on the acceptable misfit (see Appendix J). The algorithm has converged to a misfit significantly lower than the conservative upper bound.
6.11 Velocity distributions at nodes for all models with data misfit < 3 seconds from the high resolution genetic algorithm. A number of velocity anomalies can be seen: (a),(c),(d),(e) (see text). The bifurcations (b) are thought to indicate a bimodal distribution of depth for two velocity anomalies observed in the recovered models (see text). 74

6.12 Selected velocity models all with acceptable data misfit from the high resolution genetic algorithm. Models are classified according to the relationships between high velocity anomalies (a), (b), (c), (d) (see text). All models show a high velocity anomaly (d) at approximately 2 km depth, 147.6 degrees longitude with velocity between 5.7 and 6.2 km/s, and a high velocity anomaly (d) in models A to D or (c) in models F to J at 6 km depth, with velocity between 6.2 and 6.7 km/s. 77

7.1 The total magnetic intensity image for Tasmania, upward continued 5 km and linearly equalised to the limits of the Sandy Cape anomaly (a) with the survey geometry superimposed. The Andersons Creek Ultramafic complex can be clearly seen (c). Anomaly (b) appears to be of similar wavelength, magnitude and asymmetric character to (a). The southern extent of (b) intersects the survey area at the same location as the 6 km deep high velocity anomaly. The data have not been reduced to pole, as the inclination of the inducing magnetic field in Tasmania is high, and variations in the inclination and strength of the field can cause difficulties for the reduction to pole process at these regional scales. 81

7.2 A possible structural interpretation of the recovered velocity models in terms of a shallow oceanic lithosphere basement to the Eastern Tasmanian Terrane. Only two features in this interpretation are thought to be robust: high velocity anomaly 2 (upper thrust of oceanic basement); and high velocity anomaly 3 (Devonian granitoid). The western extent of the oceanic lithosphere derived basement is poorly constrained, as is the presence and extent of the Tyennan Element (see text for details). 85
7.3 A possible structural interpretation of the recovered velocity models in terms of a continental crust basement to the Eastern Tasmanian Terrane, and an allochthonous oceanic unit. Only two features in this interpretation are thought to be robust: high velocity anomaly 2 (eastern end of allochthonous boninite-tholeiite stack); and high velocity anomaly 3 (Devonian granitoid). The presence and extent of the Tyennan Element is poorly constrained by the data (see text for details). 86

A.1 Down-hole velocity results for rock units of the Tasmania Basin (Stacey, 2007) ... 91

A.2 1 dimensional velocity profiles from Drummond et al. (2000). See Figure 1.1 for locations of stations 14 and 17. 92

B.1 The state of magnetic (top) and gravity (bottom) survey data across Tasmania, courtesy of Mineral Resources Tasmania 94

D.1 Refinement of the propagation grid about the source by a factor of 3 for 3 nodes in each direction (left). When the wave front leaves the refined area it is mapped back onto the coarse propagation grid (right). From Rawlinson and Sambridge (2005). 98

F.1 The SETA array deployed by RSES. 101
Acknowledgements

This project was funded by Mineral Resources Tasmania and the Centre for Ore Deposit Research and Exploration Studies, and I am very grateful for their support, and hope I have done the project justice. Thanks also to the Australasian Institute of Mining and Metallurgy, who have supported me financially through this year.

From the University of Tasmania, I would like to extend my sincere thanks to Anya Reading, Michael Roach and Peter Cornish. Anya, my primary supervisor, for her perfect support throughout this project: never dictating terms, and always ready to assist me and guide me in the right direction, no matter how esoteric the path I was on. Without this kind of support, I could never have done it. Michael, my secondary supervisor, particularly for his help and and camaraderie on the practical side of things through endless setbacks (I will never forget the trailer). Peter, who spends a large part of his life saving honours students, myself included.

From the Research School of Earth Sciences at the Australian National University my thanks go to Nick Rawlinson for his technical support, advice and patience with a novice linux user, Tony Percival for tolerating my navigation skills for an entire week, Armando Arcidiaco for extracting the data from binary to SAC format, and Malcolm Sambridge for his inspiring words.

Many land owners would be more than a little uneasy at the prospect of an honours student with 200 kg of explosives, but Forestry Tasmania and the Southern Midlands Council made their land available for this project, and without their assistance, it would not have been possible. Thanks also to the land owners who allowed me to deploy stations when I turned up on their doorstep unannounced, in particular Steve Rockcliff for his assistance in field maintenance.

I am grateful also to Orica Mining Services, who accommodated the shots fired for this experiment in their already busy schedule, avoiding transportation costs.

In the honours room, my comrades deserve a mention. Over the last few weeks,
our sense of community has been the deciding factor in my sanity.

Finally, on the home front, thanks must go to my parents who took me in back in second semester and who have afforded me endless patience and care throughout the process.