To Katie, Anastasia, Erin and Gemma
and
to my parents.
VOLATILE AND PRECIOUS METAL GEOCHEMISTRY OF THE
MOUNT ISA ORES AND THEIR HOST ROCKS

PETER JOHN McGOLDRICK

Submitted in partial fulfilment of the
requirements for the Degree of
Doctor of Philosophy

Department of Geology,
University of Melbourne

March, 1986
ACKNOWLEDGEMENTS

Logistic, technical and financial support for this project were provided by Mount Isa Mines Holdings and Melbourne University.

The success of this venture owes a great deal to four people. I would like to especially thank my supervisor, Reid Keays, for enthusiastic guidance and constructive criticism throughout the course of this work. I am grateful to Rennie Blair and his predecessor as Chief Mine Geologist, Peter Stoker, for their patient support and continuing commitment to the project and to Bill Croxford for the role he played in helping to gain approval for me to undertake the study.

I would like to thank staff at Mount Isa for introducing me to some of the complexities of the mine geology, assisting in the collection of samples and for the hospitality shown to me during visits to Mount Isa. In particular I would like to mention Chris Bain, Rennie Blair, Morrie Dando, Steve De Cruif, Ken Mills, Dave Morris, Martin Neudert, Bill Perkins, John Poole, Andy Purvis, Col Robertson, Ray Russell, Horst Schmidt, Les Smith, Peter Stoker and Robyn Widdup.

Valuable criticism and discussion of many aspects of this work and sometimes even new inspiration were provided by the following people: Greg Anderson, Bill Croxford, Mark Fenton, Brian Gulson, Paul Hamlyn, Doug Haynes, Dick Henley, John Knights, Ross Large, John Lovering, Wayne Nesbitt, Martin Neudert, Dave Patterson, Roger Powell, Col Robertson, Ray Russell, Mike Sandiford, Steve Scott, Terry Seward, Kevin Sheedy, Neil Williams and Chris Wilson.

The companionship, encouragement and assistance of numerous friends and colleagues over many years have been particularly appreciated. These people include Geof Clark, Tony Crawford, Morrie Goodz, Paul Hamlyn, Phil Hannaker, Maunno Haukka, Terry Hughes, Majorie Heggen, Fran Kelly, Pat Kelly, Bob Krummel, Issy McDonald, Anna McGoldrick, Frances McGoldrick, Dick Marriot, John Mitchell, Susan Murphy, Roger Powell, Bruce Redman, Bridget Robinson, Mike Sandiford, Stilton Sandiford, Dave Sewell, Rick Thwaites, Helen Waldron and John Webb.

Special votes of thanks go to Maunno Haukka for helping to solve some seemingly intractable analytical problems and to Hugh McGoldrick for making sure I didn't miss my plane.
The late Mrs Lucy Barnes and the makers of "Weet-Bix" breakfast cereal played a seminal role in this project.

Finally I would like to acknowledge my parents, John and Aileen McGoldrick, and my family, Katie, Anastasia, Erin and Gemma, because without their spiritual and physical support over many years even this much could not have been achieved.
ABSTRACT

Geochemical and petrographic investigations of Pb-Zn-Ag mineralization (12 orebody) and Cu-Co mineralization (1100 orebody) from Mount Isa were undertaken. Over one hundred and twenty carefully selected samples were analyzed for major and minor elements and for some or all of the following volatile metals: Au, Ag, Cd, As, Sb, Se, Bi, Co and Tl.

A strong Tl enrichment is observed in (pyritic) unmineralized lateral equivalents of 12 orebody for several kilometers to the north of the mine sequence. The Se and As contents, S/Se ratios and S isotope relationships in the Pb-Zn ores and their host pyritic shales preclude a magmatic or deep-seated hydrothermal S source. The data suggest that sulfide S in the Urquhart Shales was derived from reduction of a "seawater"/evaporitic/pore water sulfate source.

Lateral variations in the thickness of mineralized intervals, the nature of the sulfide-gangue textures in the ores, the pervasive K and Tl enrichment in the host rocks and other chemical features of the Pb-Zn ores indicate that much of the Mount Isa mineralization formed epigenetically within the unconsolidated Urquhart Shales.

The Pb-Zn-Ag ores contain very little Au and it is argued that this feature is best explained by the hydrothermal solutions that formed the Pb-Zn ores being cool (<<200°C) and moderately oxidized.

The "silica dolomite" (the host to all the Mount Isa Cu mineralization) formed from "normal" Urquhart Shale as a result of intense fault-related hydrothermal activity (Perkins, 1984). The alteration has silicified the shales adjacent to the fault, and dolomite, phyllosilicates and "immobile" elements liberated during the silicification have been re-deposited at higher levels up-dip in the silica dolomite bodies. For the most part primary sulfide textures have not been preserved.

It is argued that the distribution of several elements (notably Co, Bi, As, Fe and S) in 1100 orebody and its location down-dip from a strongly pyritic section of Urquhart Shale are good evidence that stratiform Co (and Cu) mineralization was present in pyritic Urquhart Shales prior to formation of the silica dolomite. Chemical and isotopic evidence suggests that the Cu mineralization had a
similar S-source and formed from similar solutions to the Pb-Zn-Ag ores.

A new co-genetic model for the Mount Isa Cu and Pb-Zn-Ag deposits in which the mineralization formed from cool oxidized solutions in the upper few meters of the unconsolidated Urquhart Shales is presented. The metal-bearing solutions were expelled from their source rocks (oxidized clastic sediments lower in the Mount Isa Group) during the course of normal basin compaction and dewatering. Base metal sulfides were fixed by sulfate reduction processes occurring in the diagenetic environment of the Urquhart Shales. Weathered mafic volcanic detritus may have been an important component of the source.
# TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title Page</td>
<td>(i)</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>(ii)</td>
</tr>
<tr>
<td>Abstract</td>
<td>(iv)</td>
</tr>
<tr>
<td>Table of contents</td>
<td>(vi)</td>
</tr>
<tr>
<td>List of figures</td>
<td>(x)</td>
</tr>
<tr>
<td>List of tables</td>
<td>(xvii)</td>
</tr>
</tbody>
</table>

## 1. INTRODUCTION
1.1 Scope of the study | 1
1.2 Format of the thesis | 2

## 2. GEOLOGICAL AND HISTORICAL BACKGROUND TO THE MOUNT ISA DEPOSITS
2.1 Historical perspective | 5
2.2 Geological setting of the Mount Isa and McArthur River deposits
   2.2.1 The McArthur Basin | 8
   2.2.2 The Mount Isa Inlier | 11
2.3 Geology of the mine area | 14
2.4 The Urquhart Shale
   2.4.1 Silica dolomite | 19

## 3. GEOCHEMISTRY OF THE VOLATILE METALS
3.1 Selenium | 32
3.2 Gold | 33
3.3 Silver | 35
3.4 Arsenic | 38
3.5 Antimony | 40
3.6 Thallium | 41
3.7 Bismuth | 42
3.8 Cadmium | 43

## 4. AN INTRODUCTION TO THE GEOCHEMISTRY OF THE MOUNT ISA ORES AND HOST ROCKS: INTERELEMENT CORRELATIONS AND MINERAL NORMS
4.1 Sampling | 46
   4.1.1 Lead-zinc-silver orebodies and equivalents | 46
   4.1.2 Silica dolomite | 47
4.1.3 Barren shales
4.1.4 Eastern Creek Volcanics

4.2 Analytical techniques

4.3 Gross composition of the samples
4.3.1 Shales
4.3.2 Lead-zinc-silver ores
4.3.3 Tuff marker beds
4.3.4 Fractured siliceous shale
4.3.5 Irreg and Recrys

4.4 Interelement correlations
4.4.1 Preliminary discussion
4.4.2 Results
4.4.2.1 Shales
4.4.2.2 Lead-zinc-silver ores
4.4.2.3 Tuff marker beds
4.4.2.4 Fractured siliceous shale
4.4.2.5 Irreg and Recrys

4.5 Discussion

5. CONSTRAINTS ON THE FORMATION OF THE MOUNT ISA LEAD-ZINC-SILVER MINERALIZATION
5.1 Preliminary discussion: models for Pb-Zn-Ag mineralization
5.2 Pyrite
5.2.1 Diagenetic pyrite formation in modern sediments
5.2.2 Pyrite in sedimentary rocks
5.2.3 Pyrite at Mount Isa and McArthur River
5.2.4 Arsenic in the McArthur River and Mount Isa deposits
5.3 Constraints on the source of the sulfur
5.3.1 Selenium in the Pb-Zn-Ag ores and shales
5.3.2 Sulfur isotopes
5.3.3 Summary

5.4 Textural, structural and chemical constraints on the formation of the Pb-Zn-Ag mineralization
5.4.1 Lateral variations in 12 orebody
5.4.2 Metamorphism of the Pb-Zn-Ag ores
5.4.3 Small-scale features of the Pb-Zn-Ag mineralization
8. A CO-GENETIC MODEL FOR THE MOUNT ISA COPPER AND LEAD-ZINC-SILVER ORES

8.1 A new model for the formation of the Mount Isa deposits

8.2 Source for metals in the Mount Isa deposits

8.3 Further discussion

8.3.1 Temperature of the ore-forming solutions

8.3.2 The source of mineralizing fluids

8.3.3 Movement of metal-bearing solutions

8.3.4 Major solute composition of the ore-forming solutions

8.3.5 pH of ore-forming solutions

8.3.6 Metals in solutions

8.3.7 Precipitation of metal sulfides and separation of Cu from Pb-Zn ores

8.3.7.1 Cu-Co mineralization

8.3.7.2 Pb-Zn-Ag mineralization

8.3.8 Effects of silica dolomite formation

8.4 Limitations of the model and suggestions for further work

REFERENCES

APPENDICES

Appendix A: Co-genetic copper & lead-zinc-silver ores at Mount Isa: Part I: Pathfinder elements and exploration guidelines

Appendix B: Sample list and sample preparation procedures

Appendix C: Analytical techniques 1: XRF spectrometry for major and trace elements

Appendix D: Analytical techniques 2: Radiochemical neutron activation analysis procedures

Appendix E: Complete analytical data for Mount Isa Samples

Appendix F: Normative mineralogy of the Mount Isa ores and host rocks

Appendix G: Lead isotope studies bearing on the genesis of copper orebodies at Mount Isa, Queensland - a discussion

Appendix H: Precious and volatile metals in the Perseverance nickel deposit gossan: implications for exploration in weathered terrains