GEODESY AND GEOCHEMISTRY OF THE WARRABARTY CARBONATE-HOSTED Zn-Pb PROSPECT, PATERSO OROGEN, WESTERN AUSTRALIA

by

Stuart G. Smith (BSc. Hons.)

Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

University of Tasmania
February 1996
For Jac and Sam
This thesis contains no material which has been accepted for the award of any other higher degree or graduate diploma in any tertiary institution and, to the best of the author's knowledge and belief, the thesis contains no material previously published or written by another person, except where due reference is made in the text of the thesis.

Stuart Smith
This thesis is not to be made available for loan or copying for two years following the date this statement was signed. Following that time the thesis may be made available for loan and limited copying in accordance with the Copyright Act 1968

Stuart Smith
Date:
Warrabarty is a sub-economic, carbonate-hosted Zn-Pb prospect in the Great Sandy Desert of Western Australia. The prospect occurs beneath 80 to 150 m of younger cover rocks and is known only from drilling. Mineralisation has been intersected over a strike length of approximately 2.5 km and has been tested by approximately 6 km of diamond drill core from 29 drill holes.

The prospect occurs within ?Meso- to Neoproterozoic, sub- to midgreenschist facies metasediments of the Throssell Group of the Paterson Orogen. In addition to Warrabarty, the Throssell Group hosts mineralisation at the Nifty copper deposit and the Maroochydore and Rainbow copper prospects. The Warrabarty prospect is hosted by the upper Broadhurst Formation of the Throssell Group, which has been affected by four deformations. Of these, D2 is the most significant, producing northwest trending, gently plunging open to tight folds and a variably developed northeast dipping cleavage. In the vicinity of the prospect the Broadhurst Formation consists of a thick (> 400 m) sequence of carbonaceous dolostones (termed dark dolostone) with lesser conformable, organic poor dolostones (termed dolostone A) and minor fine grained limestones. Dolomitisation is interpreted to have occurred during late diagenesis in the burial diagenetic regime.

A later generation of medium to coarse grained, light grey, unimodal, nonplanar dolostone, termed dolostone B also occurs. Dolostone B forms interbeds, crosscutting zones and a >400 m thick, partially crosscutting, massive unit in the southern part of the prospect area. Abundant examples of dolostone B crosscutting bedding and pressure solution in earlier dolostones indicate a later timing for dolostone B, and show that it formed by replacement of dark dolostone and dolostone A. Dolostone B is spatially associated with mineralisation and is interpreted to have formed as an alteration feature immediately prior to and synchronous with mineralisation.

Warrabarty mineralisation occurs as breccias, veins and zones of disseminated to massive sulphide. Typical mineralisation is Zn-rich and low grade (typically 3-6 wt % Zn + Pb), with minor zones up to 40 wt % Zn + Pb; Cu, Ag and As values are low. Sulphide mineralogy is simple consisting of low Fe sphalerite, pyrite and galena with minor chalcopyrite and extremely rare arsenopyrite, bornite and chalcocite. Gangue mineralogy consists of four stages of dolomite, minor quartz, pyrobitumen and phlogopite. The mineralisation has been subdivided into two major paragenetic stages: grey stage and white stage. The grey stage predates the white stage and was responsible for introduction of almost all Zn and Pb into the prospect. White stage mineralisation remobilised Zn and Pb and introduced very minor Cu.

The most widespread mineralised breccia type at Warrabarty is typically clast supported and consists of angular to rounded dolostone B clasts in a cement of sphalerite and dolomite, with
minor pyrite ± galena. Brecciation and porosity creation was caused by a combination of fracturing and carbonate dissolution, prior to mineralisation and dolostone B alteration. In these breccias and most veins, sphalerite (± pyrite) was the earliest mineral deposited, forming rims on breccia clasts and selvages to veins; galena occurs consistently later in the paragenesis than sphalerite. In some breccias and veins, sphalerite has replaced clasts and wall rock, resulting in higher Zn grades. Sphalerite is well zoned, has abundant solid pyrobitumen and carbonate inclusions and contains dissolution surfaces which cannot be correlated between samples. The minor Cu introduction that occurred during the white stage forms chalcopyrite disease of sphalerite.

Grey stage mineralisation occurred after late diagenetic dolomitisation and bedding parallel pressure solution, but is overprinted by S2 fabrics. Many white stage veins have fibrous crystal morphology and branching, tapered, sygmoidal shapes typical of syntectonic veins and are interpreted to have formed during D2.

Primary fluid inclusions from grey stage sphalerite show a bimodal distribution of trapping temperatures; with an early low temperature population (165°C - 205°C) and a paragenetically later higher temperature population (215°C - 245°C). These fluid inclusions have low first melting temperatures indicative of complex CaCl₂ (± Mg, Fe, K) bearing brines and salinity estimates from final ice melting temperatures range from 22 - 25.5 wt % total salts. Grey stage dolomite trapping temperatures (227°C - 276.5°C) are higher than sphalerite temperatures, although first melting temperatures are similar and salinity estimates (14.5 - 26 wt % total salts) are also comparable with sphalerite. White stage fluid inclusions associated with chalcopyrite disease have trapping temperatures ranging from 300°C to 400°C. First melting temperatures for these fluid inclusions indicate CaCl₂ bearing brines and salinities have been estimated at 15 to 22 wt NaCl and 2.5 to 5.5 wt % CaCl₂.

Carbon and oxygen isotope data from least altered Throssell Group carbonates range from: δ¹³C + 2.7 to + 6.1 % and δ¹⁸O 21.7 to 27.1 ‰. Dolostone B alteration and grey stage cements range from: δ¹³C + 0.4 to + 6.8 % and δ¹⁸O from 21.7 to 28.4 ‰ and show almost complete overlap with the least altered host rock field. White stage dolomite carbon and oxygen isotope compositions range from δ¹³C + 0.9 to + 4.5 % and δ¹⁸O 16.7 to 27.5 ‰ and define a relatively steep trend on δ¹⁸O - δ¹³C plots which is most consistent with water-rock interaction.

Grey stage sulphide δ³⁴S compositions range from + 1.5 ‰ to + 20.4 ‰ with a distinct mode at 11 to 14 ‰ and a sharp cut-off at approximately 14 ‰. The data are interpreted to reflect mixing between an isotopically light host rock sulphur source and an introduced, reduced sulphur source of approximately +14 ‰. The heavy, introduced sulphur was derived from Proterozoic seawater (as connate brines or by dissolution of evaporites) shifted to lighter values by thermochemical
sulphate reduction and mixing with biogenically reduced sulphur, far removed from the site of mineralisation. White stage sulphide δ^{34}S ranges from -6.9 to +16.0 $\%$, with the lightest values from chalcopyrite diseased sphalerite. The white stage is interpreted to have sourced sulphur by remobilisation of grey stage heavy sulphur and from an introduced light sulphur source which accompanied chalcopyrite formation. This light sulphur source has δ^{34}S values similar to the light sulphur signatures of the Throssell Group copper deposits.

Lead isotope ratios of galena from Warrabarty and the three Throssell Group copper deposits define a linear trend on Pb-Pb plots, which implies that all deposits formed at approximately the same time. Modelled compositions of possible source rocks indicates that lead was derived from leaching of Throssell Group sedimentary rocks in the vicinity of the deposits. The lead isotope compositions imply an age of approximately 840 Ma, consistent with a syn diagenetic timing for mineralisation at Warrabarty and the copper deposits.

Thermodynamic considerations indicate that the Warrabarty grey stage fluid was capable of transporting reduced sulphur together with metals and that sphalerite precipitation was caused by increasing pH, resulting from dolomite dissolution. The Zn grade of any particular sample is controlled by the coupled dolomite dissolution-sphalerite precipitation reaction. The increase in temperature that occurred from sphalerite deposition to dolomite deposition may have resulted in relatively short-lived sphalerite deposition, thereby contributing to the overall low grade of the deposit. Consideration of Cu and Au solubility data indicates that the Throssell Group white stage fluids were capable of carrying ore forming quantities of Cu and Au; therefore future exploration in the district should consider Cu-Au targets. The Warrabarty grey stage mineralisation shares many features with MVT and Irish-type Zn-Pb deposits, although it cannot be easily classified into either group.
ACKNOWLEDGMENTS

The CODES Key Centre is an exciting and interesting place to do economic geology research, and without the hard work and commitment of Ross Large the key centre would not exist, thanks Ross. I owe a large debt to my supervisor Dr Bruce Gemmell for his encouragement throughout the life of the project and his dedication to the unenviable task of reading my fairly rough early drafts. Many other staff members have provided assistance and given freely of their time over the last 3½ years. Dr David Cooke pointed me in the right direction with fluid inclusions and thermodynamics and introduced me to the "spreadsheet of death". Dave also provided very thorough reviews of parts of the thesis and I'm sure gave me much more of his time than he could really afford. Dr Garry Davidson showed an interest in my project from start, to finish and reviewed several sections of the thesis. I also thank a number of other people who have helped by reviewing chapters or by sharing their time and knowledge, these include: Dr's Peter McGoldrick, Joe Stolz, Ron Berry, Stu Bull, Paul Kitto, Prasada Rao, Khin Zaw (all at CODES) and Neal McNaughton (UWA).

My fellow post-grad. students at CODES have helped by sharing their friendship, geological knowledge and the odd Friday afternoon overlooking Barilla Bay. Thanks to Mike Roache, Steve Bodon, Andrew Tunks, Matt White, Andrew McNeill, David Selley, Jamie Rogers, Anthea Hill, Mark Doyle, Karin Orth, Dave Rawlings, Pete Winefield and Bill Wyman. Technical and clerical staff at CODES, the CSL and staff of the SciTech library have provided invaluable assistance. I thank the following; Mike Power, Christine Cook, Lynn Davies, Jane MacGill, Simon Stephens, June Pongratz, Jeanette Harris, Peter Cornish and Christine Higgins.

I am grateful for the funding provided by Western Mining Corporation. John Cathcart provided great moral and also more tangible support when no-one else seemed interested. I thank Pat Dare for his friendship and interest, Peter Eaton for initiating the project and his help in the early days, and Megan Clarke for her help during part of the project. More recently Terry Burns has seen the value of research for exploration in the Yeneena and provided an injection of enthusiasm. Perry Lawrence and Wayne Hastie were great company during my desert stays and I don't care what you say - rugby is what real Aussies play! I am grateful to Alistair Reed (UWA) for many discussions about the Yeneena and I hope your search is fruitful.

Although from a distance, my Mum and Dad, the Crafts (and Lilleys!) and the Woods have all helped by providing the kind of family that is so important to anything we do, thanks guys. All the people mentioned above contributed the successful completion of this thesis in some way, however by far the greatest debt I owe is to my wife Jaci and son Sam. Thanks for your love, patience and tolerance of an absentee husband/father. I hope you agree that its been worth it and now it's pay back time!
TABLE OF CONTENTS

CHAPTER 1. INTRODUCTION, AIMS AND METHODS
1.1 INTRODUCTION.. 1.1
1.2 PREVIOUS STUDIES OF THE WARRABARTY PROSPECT...................................... 1.2
1.3 AIMS OF THIS STUDY... 1.2
1.4 METHODS.. 1.3

CHAPTER 2. GEOLOGICAL SETTING OF THE WARRABARTY PROSPECT
2.1 INTRODUCTION AND NOMENCLATURE ... 2.1
2.2 YENEENA SUPERGROUP STRATIGRAPHY... 2.2
 2.2.1 Throssell Group... 2.2
 2.2.2 Lamil Group... 2.7
 2.2.3 Position of Warrabarty in Regional Stratigraphy... 2.8
2.3 STRUCTURE.. 2.8
 2.3.1 Introduction... 2.8
 2.3.2 Miles Orogeny ($D_1 - D_2$).. 2.9
 2.3.3 Post Miles Orogeny Deformation... 2.10
 2.3.4 Structure of the Warrabarty Prospect Area... 2.10
2.4 METAMORPHISM.. 2.17
2.5 INTRUSIVE ROCKS... 2.20
2.6 GEOCHRONOLOGY.. 2.20
2.7 MINERALISATION... 2.22
 2.7.1 Throssell Group... 2.22
 2.7.2 Lamil Group... 2.23

CHAPTER 3. CARBONATE TEXTURES & PARAGENESIS
3.1 INTRODUCTION.. 3.1
3.2 DESCRIPTION OF HOST ROCK CARBONATES... 3.2
 3.2.1 Dark Dolostones... 3.2
 3.2.2 Massive Dolostone A.. 3.3
 3.2.3 Massive Dolostone B.. 3.3
 3.2.4 Limestones... 3.4
3.3 ORIGIN AND TIMING OF DOLOSTONES.. 3.6
 3.3.1 Background... 3.6
 3.3.2 Dark Dolostone-Massive Dolostone A.. 3.7
 3.3.3 Massive Dolostone B.. 3.8
 3.3.4 Limestones... 3.8
3.4 DOLOMITE CEMENT PARAGENESIS.. 3.9
 3.4.1 Introduction... 3.9
 3.4.2 Hand Specimen and Optical Petrography... 3.9
 3.4.3 Cathodoluminescence... 3.10
3.5 MINOR AND TRACE ELEMENT CHEMISTRY.. 3.11
3.6 BLACK MATRIX BRECCIAS... 3.12
 3.6.1 Introduction... 3.12
 3.6.2 Occurrence... 3.13
 3.6.3 Petrography... 3.13
CHAPTER 4. TEXTURES AND PARAGENESIS OF WARRABARTY MINERALISATION

4.1 INTRODUCTION...4.1
4.2 ZONATION, TENOR AND DISTRIBUTION OF THE MINERALISATION........4.1
4.3 DESCRIPTION OF MINERALISATION STYLES...............................4.4
 4.3.1 Breccias...4.4
 4.3.2 Disseminated to Massive Mineralisation..............................4.10
 4.3.3 Veins..4.12
4.4 PETROGRAPHY OF INDIVIDUAL MINERALS..............................4.15
 4.4.1 Sphalerite..4.15
 4.4.2 Galena...4.17
 4.4.3 Pyrite...4.18
 4.4.4 Chalcopyrite, Bornite, Chalcocite, Arsenopyrite.................4.19
 4.4.5 Pyrobitumen..4.23
 4.4.6 Phlogopite..4.23
4.5 DEFORMATION TEXTURES..4.24
 4.5.1 Introduction..4.24
 4.5.2 Microstructure of Warrabarty Mineralisation.......................4.24
4.6 PARAGENETIC SCHEME FOR THE WARRABARTY DEPOSIT..........4.30
 4.6.1 Relationship of Grey and White Stage Mineralisation...........4.31
 4.6.2 Paragenetic Scheme..4.31
4.7 RELATIVE TIMING OF WARRABARTY MINERALISATION...............4.31
4.8 SUMMARY AND CONCLUSIONS...4.33

CHAPTER 5. FLUID INCLUSION STUDIES

5.1 INTRODUCTION...5.1
5.2 METHODS...5.1
5.3 CLASSIFICATION OF FLUID INCLUSION TYPES.........................5.4
5.4 FLUID INCLUSION PETROGRAPHY...5.4
 5.4.1 Grey Stage Sphalerite...5.4
 5.4.2 White Stage Sphalerite..5.5
 5.4.3 Grey Stage Dolomite...5.5
 5.4.4 White Stage Dolomite..5.6
 5.4.5 Rainbow and Citadel White Stage Quartz........................5.6
5.5 RESULTS...5.6
 5.5.1 Fluid Inclusion Microthermometry..................................5.7
 5.5.2 Laser Raman Analysis..5.10
 5.5.3 Fluid Inclusion Decrepitate Analysis...............................5.11
5.6 PHYSIOCHEMICAL CHARACTERISTICS OF THE FLUIDS............5.12
 5.6.1 Introduction..5.12
 5.6.2 Warrabarty Grey Stage...5.12
CHAPTER 6. CARBON AND OXYGEN ISOTOPE GEOCHEMISTRY

6.1 INTRODUCTION ...6.1
6.2 METHODS ..6.2
6.3 SAMPLING STRATEGY AND RESULTS.................................6.2
 6.3.1 Yeneena Supergroup Carbonates6.3
 6.3.2 Altered Host Rocks ...6.3
 6.3.3 Veins/Breccia Cements ...6.3
 6.3.4 THRD 788 Mylonite Zone Calcite6.4
 6.3.5 Detrital Dolomite Sand Bodies (DDSB)6.4
6.4 BRIEF REVIEW: THE CARBON CYCLE AND PROTEROZOIC SEDIMENTARY CARBONATES ...6.5
6.5 DISCUSSION ...6.6
 6.5.1 Yeneena Supergroup Carbonates in Relation to Proterozoic Seawater: Implications for the Age of the Yeneena Supergroup6.6
 6.5.2 Dolostone B Alteration and Dolomite Cements6.8
 6.5.3 THRD 788 Mylonite Zone Calcites6.11
 6.5.4 Detrital Dolomite Sand Bodies (DDSB)6.11
6.6 CONCLUSIONS ..6.12

CHAPTER 7. SULPHUR ISOTOPE GEOCHEMISTRY

7.1 INTRODUCTION ..7.1
7.2 METHODS ...7.1
7.3 WARRABARTY SULPHUR ISOTOPE RESULTS7.2
 7.3.1 Grey Stage Mineralisation ...7.2
 7.3.2 White Stage Mineralisation7.3
7.4 SULPHUR ISOTOPE COMPOSITION OF THE THROSSELL GROUP Cu DEPOSITS ..7.3
 7.4.1 Nifty ..7.3
 7.4.2 Rainbow ...7.4
 7.4.3 Maroochydore ..7.4
7.5 SULPHUR CYCLING IN SEDIMENTARY AND LOW GRADE METAMORPHIC ROCKS ..7.4
7.6 SULPHUR ISOTOPE COMPOSITION OF POTENTIAL SULPHUR SOURCES ...7.6
 7.6.1 Proterozoic Seawater ..7.6
 7.6.2 Diagenetic Sulphides & Organic Bound Sulphur7.7
 7.6.3 Pyrrhotite ..7.7
7.7 DISCUSSION: EQUILIBRIUM? ..7.8
7.8 DISCUSSION: SULPHUR SOURCES AT WARRABARTY7.9
 7.8.1 Grey Stage ...7.9
 7.8.2 White Stage ...7.17
7.9 SOURCES OF SULPHUR FOR THE THROSSELL GROUP Cu DEPOSITS ...7.18
7.10 CONCLUSIONS ..7.19

CHAPTER 8. LEAD ISOTOPE STUDIES

8.1 INTRODUCTION ..8.1
8.2 ANALYTICAL METHODS ..8.1
8.3 Pb ISOTOPE CHARACTER OF THE MINERALISATION.. 8.2
 8.3.1 Warrabarty ... 8.2
 8.3.2 Throssell Group Cu Deposits .. 8.3
8.4 POTENTIAL METAL SOURCES... 8.4
 8.4.1 Pilbara Craton .. 8.4
 8.4.2 Rudall Complex .. 8.6
 8.4.3 Yeneena Supergroup Sediments ... 8.7
8.5 DISCUSSION... 8.8
8.6 IMPLICATIONS OF THE MODEL... 8.11

CHAPTER 9. TRANSPORT AND DEPOSITION OF METALS
9.1 INTRODUCTION .. 9.1
9.2 GREY STAGE fO2-pH DIAGRAMS.. 9.1
 9.2.1 Parameters and Assumptions Used to Construct Diagrams 9.1
 9.2.2 Discussion: Metal Transport ... 9.2
 9.2.3 Discussion: Sulphide Precipitation ... 9.3
 9.2.4 Nature of Dissolved Carbon Species ... 9.6
9.3 WHITE STAGE FLUIDS.. 9.7
9.4 CONCLUSIONS... 9.8

CHAPTER 10. CONCLUSIONS, GENETIC MODEL, COMPARISON WITH OTHER DEPOSITS AND EXPLORATION IMPLICATIONS
10.1 INTRODUCTION ... 10.1
10.2 CONCLUSIONS.. 10.1
10.3 GENETIC MODEL... 10.4
10.3 COMPARISON OF WARRABARTY WITH OTHER CARBONATE-HOSTED BASE METAL DEPOSITS ... 10.6
10.4 EXPLORATION IMPLICATIONS OF THIS STUDY .. 10.9
 10.4.1 Warrabarty Area .. 10.9
 10.4.2 Regional Scale Exploration .. 10.10

REFERENCES
APPENDIX 1 DIAMOND DRILL LOGS
APPENDIX 2 MICROPROBE DATA
APPENDIX 3 DRILL HOLE ASSAY DATA
APPENDIX 4 FLUID INCLUSION DATA
APPENDIX 5 CARBON AND OXYGEN ISOTOPE DATA
APPENDIX 6 SULPHUR ISOTOPE DATA
APPENDIX 7 WHOLE ROCK LEAD ISOTOPE DATA
APPENDIX 8 K-Ar DATING OF BIOTITE FROM THE RAINBOW AREA
APPENDIX 9 UNIVERSITY OF TASMANIA ROCK CATALOGUE