The geology, timing of mineralisation, and genesis of the Menninnie Dam Zn–Pb–Ag deposit, Eyre Peninsula, South Australia

Michael W. Roache MSc (Hons)

Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

University of Tasmania
December 1996
This thesis contains no material which has been accepted for the award of any other higher degree or graduate diploma in any tertiary institution and, to the best of the author's knowledge and belief, contains no material previously published or written by another person, except where due reference is made in the text of the thesis.

Michael W Roache

CONFIDENTIAL THESIS
Restricted access only. Embargo applies till 22nd November 1998

This thesis shall not be made available for consultation, loan, or photocopying for a period of eighteen months starting May 22nd 1997 without the written consent of the author and in accordance with the laws of copyright.
Frontispiece: View looking south along the 10000 mE base line of the Menninnie Dam Pb - Zn - Ag prospect. The road to riches, or the road to nowhere?
Abstract

The Menninnie Dam Pb - Zn - Ag deposit is located on the northern Eyre Peninsula of South Australia, approximately 1-2 km south of the main mass of the Gawler Range Volcanics. The deposit has no surface expression and was located by drilling of aeromagnetic anomalies in deeply weathered, flat lying terrain. Mineralisation occurs over ~ 3 km strike and is hosted by upper amphibolite facies (~ 700°C and 7 kbars) marbles and diopside-rich calc-silicate lithologies, correlated with the Katunga Dolomite and lower units of the Cook Gap Schist of the Middleback Subgroup, a subdivision of the Hutchison Group (1964 - 1845 Ma.). The Katunga Dolomite is bound to the west by a shear zone (> 50 m wide) formed during the latter stages of the Kimban Orogeny (1740 - 1710 Ma.). Syn-deformation granite dykes intruded into the shear zone, and, to a lesser extent, into the Katunga Dolomite and Cook Gap Schist. Late tectonic pegmatite dykes intruded into the Katunga Dolomite and lower units of the Cook Gap Schist, where they produced zones of K-feldspar - calc-silicate metasomatism.

Previous researchers have incorrectly suggested that the Menninnie Dam Pb - Zn - Ag deposit is a Broken Hill-type. However, Pb - Zn - Ag mineralisation post-dates metamorphism, deformation and metasomatism and has replaced the host marble, and to a lesser extent, diopside-rich calc-silicate lithologies. On the basis of lithologic relationships, most mineralisation formed within 100 - 600m of the palaeosurface, and resulted in a central zone of stockwork and matrix to marble and calc-silicate breccias, flanked by veins. Sulphide and gangue minerals consist of a simple assemblage of pyrite, quartz, sphalerite, galena and Ca-Mn-Mg-Fe carbonate, with accessory chalcopyrite, chlorite, adularia, sericite, fluorite, rhodonite, talc, phlogopite, dolomite, hematite and matildite. Three paragenetic stages of mineralisation are present with an early pyrite stage, followed by a sphalerite galena, and late pyrite stages. Metal abundances have a bell-shaped distribution along the length of the deposit and the highest values are associated with the zone of stockwork and breccia mineralisation.

Post metamorphic, porphyritic rhyolite intruded the Hutchison Group, and interacted with (heated?) groundwater resulting in explosive fragmentation of the host rocks and formation of polymictic breccia pipes. Some of these erupted onto the palaeosurface and formed layered polymictic breccias. Rhyolite continued to intrude through polymictic breccia pipes, and resulted in formation of peperite at the margins. Some rhyolite intrusions erupted onto the palaeosurface and formed volcanic breccias and rhyolite lavas. Polymictic breccias contain clasts of paragenetically early sulphide and gangue minerals, and have an altered matrix that includes paragenetically late sulphide minerals, indicative of syn-mineralisation emplacement. U-Pb zircon dating of the rhyolite intrusions constrains the timing of mineralisation to 1594 ± 7 Ma. which is indistinguishable from that determined for the Hiltaba Suite granitoids and co-magmatic Gawler Range Volcanics.
Modelling of regional gravity and aeromagnetic data indicates the Menninnie Dam deposit lies near the north-western margin of a 20 km diameter Hiltaba Suite granite that intruded to within 1 - 3 km of the palaeo-surface. Lead was derived from the underlying Hiltaba Suite granite and leached from Cook Gap Schist. Lead isotope ratios have a spatial distribution on a prospect scale, and the least radiogenic ratios correspond with the highest metal values and the central zone of stockwork and breccia style mineralisation, consistent with a single zone of fluid up-flow. Carbonate gangue is interpreted to have precipitated via interaction of the mineralising fluid ($\delta^{18}O = -2.0\%o; \delta^{13}C = -6.9\%o$) in equilibrium with $H_2CO_3(aq)$ (> 0.01 molal) and the host marbles ($\delta^{18}O = 15.5$ to $21.09\%o; \delta^{13}C = -1.1$ to $1.6\%o$) between 200° and 125°C. Hydrous phyllosilicates associated with mineralisation have calculated fluid values of $\delta^{18}O = -0.7$ to $-2.0\%o$ and $\deltaD = -43$ to $-48\%o$, indicative of a mixed meteoric - magmatic origin for the mineralising fluids. Sulphide $\delta^{34}S$ values range from -3.0 to 8.2‰, with most between 4 to 6‰. The lack of evidence for sulphur isotope fractionation between different sulphide minerals is consistent with non-equilibrium precipitation of sulphides from a reduced fluid, low temperature kinetic effects and / or a $H_2S : metal$ ratio ≥ 1. Sulphur was sourced from either the magma, the country rocks, or a combination of both.

Primary fluid inclusions hosted by sphalerite and quartz have a range of trapping temperatures and salinities interpreted to have resulted from mixing of $\approx 140^\circ C$ and ≈ 27 wt.% $NaCl$ equivalent Na-Ca-K-Cl brine with a $\approx 180^\circ C$ dilute chloride water. Thermodynamic modelling has shown that sufficient concentrations of Pb and Zn (> 1 ppm) can be transported together with reduced sulphur ($\Sigma S = 0.002$ molal) in a low temperature ($150^\circ C$) saline brine (≈ 6 molal) to form the Menninnie Dam deposit. The physiochemical attributes of the mineralising fluid at $150^\circ C$ are estimated to have been $\log fO_2 = -46$ and $pH = 4.6$. Dilution through mixing with heated groundwater was a possible base metal depositional mechanism but is predicted to have been less effective than the pH increase that resulted from dissolution of the host marbles.

Soon after cessation of the mineralising event, the stratigraphy was mantled by a single cooling unit > 260 m thick of lithic-rich ($\approx 45\%$ and up to 20 m across) welded ignimbrite (MD ignimbrite). The thickness, abundance and size of lithic clasts in the MD ignimbrite, and shallow intrusion of granite are consistent with an intracaldera setting. Following welding and cooling of the MD ignimbrite, the lower part of the MD ignimbrite and the Hutchison Group near the southern end of the Menninnie Dam deposit were partially altered to a texturally destructive quartz - chlorite - carbonate - calc-silicate assemblage by a hot, low salinity water ($190 - 356^\circ C$ and $0 - 3$ wt. $% NaCl$ equiv.). Carbon, hydrogen, and oxygen isotopes are consistent with a meteoric water that had undergone partial isotopic exchange with igneous rocks. Mineral textures, whole rock geochemistry, lead and sulphur isotope data are consistent with the Menninnie Dam Pb - Zn - Ag mineralisation being partially dissolved and reprecipitated by this event, with no addition of metals or sulphur.
My thanks go to my partner, Margaret for her love, patience and support throughout the course of this thesis.

Research on the Menninnie Dam prospect would not have been possible without logistical and financial support by Aberfoyle Resources Ltd. and Acacia Resources Ltd. In particular I would like to thank John Anderson, Dr. Bob Beeson, Dave Borton and Chris Young who helped establish this research project and who provided encouragement throughout. I would like to point out that although Dr Beeson has previously published papers concerning the similarity of the Menninnie Dam mineralisation to Broken Hill-type, he always listened to my findings with an unbiased ear and provided constructive comments. It is this ability to move forward in research rather than pursue a model that is the hallmark of a competent scientist.

Without the guidance, support, enthusiasm, and patience of my supervisors, Dr Bruce Gemmell, Dr David Cooke and Prof. Ross Large, completion of this thesis would probably have been significantly delayed. Dr. Bruce Gemmell and Prof. Ross Large also contributed useful advice to the organisation of early drafts, but the crown has to go to Dr David Cooke for his valiant efforts in correcting my grammar, and to whom I owe a debt of numerous red pens. In addition, I extend my gratitude to others who also laboured through early drafts of chapters and the ensuing discussions including: Dr Paul Kitto, Dr Ron Berry, Dr Garry Davidson, Dr Mike Solomon, Dr Jocelyn McPhie, Dr Michael J. Roach, Dr Khin Zaw, Dr Joe Stolz, Mark Doyle, Dr Graham Carr and Dr Peter McGoldrick.

Dr. Graham Carr (CSIRO) is thanked for his discussions regarding the lead isotope data from Menninnie Dam, and for reviewing a wild and woolly early draft of Chapter 7. Dr. Carr's assistance in organising additional lead isotope analyses is gratefully appreciated. Dr. Judy Dean (CSIRO) is thanked for her efforts in locating early lead isotope data from Menninnie Dam, and allowing some of her unpublished data to be used for this study. Dr. Anita Andrew (CSIRO) analysed the Menninnie Dam samples for hydrogen isotopes and her contribution to discussions regarding sample preparation and isotopic fractionation are appreciated. Anita Andrew is also thanked for allowing her unpublished sulphur isotope data to be used for this study.

I extend my thanks to numerous people from the Mines and Energy Department of South Australia (MESA) for their willing assistance in locating samples and reports. Particular thanks go to Dr. John Parker who freely gave his time to guide a group of us on a very enjoyable excursion examining the geology of the Eyre Peninsula. Dr Parker was
instrumental in organising MESA funding for U-Pb zircon dating of Menninnie Dam samples. Thanks to Dr. Mark Fanning (A.N.U.) for his time and efforts in determination of U-Pb zircon dates, and for the constructive discussions that followed.

Chris Drown, Dr. Steve Toteff, Mark Teakle, Brett Rava, Nicki, Bowden, Cathy Curran, Rick Elson, Banantyne (Ben) Coutts, Robert (Beags) Appleby, Roger Wilmer and Russell (Ferd) Durdin from Aberfoyle's Adelaide office are thanked for their friendship, support and interesting discussions. Chris Drown's considerable knowledge of the Menninnie Dam project, his unflagging interest and contribution to discussions were of great benefit. There were numerous instances where conception of credible solutions to complex lithological textures required a little lubrication, and although sometimes teetotal, Chris always willingly contributed to these occasions... Cheers!

I am grateful for the technical help and administrative assistance provided by numerous people including: Ralph Botteril, Peter Cornish, Lynn Davies, Marilyn Feast, Jeanette Hankin, Christine Higgins, Neila Hlaing, Dr Wieslaw Jablonski, Fred Koolhof, Gerrit Kuipers, June Pongratz, Mike Power, Phil Robinson, Kathi Stait, Simon Stevens, Richard Woolly.

Throughout the period of this thesis I have enjoyed the company and friendship of numerous staff and students at CODES and in the Scitech Library, to all of you Cheers!
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frontispiece</td>
<td>i</td>
</tr>
<tr>
<td>Title Page</td>
<td>ii</td>
</tr>
<tr>
<td>Statement</td>
<td>iii</td>
</tr>
<tr>
<td>Abstract</td>
<td>iv</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>vi</td>
</tr>
<tr>
<td>Table of contents</td>
<td>viii</td>
</tr>
<tr>
<td>List of figures</td>
<td>xiii</td>
</tr>
<tr>
<td>List of tables</td>
<td>xvi</td>
</tr>
<tr>
<td>List of appendices</td>
<td>xviii</td>
</tr>
</tbody>
</table>

Chapter 1: Introduction

1.1 Introduction | 1.1 |
1.2 Location | 1.2 |
1.3 Previous work | 1.3 |
1.4 Menninnie Dam project history | 1.3 |
1.5 General statement of aims and methods | 1.4 |

Chapter 2: Physiography and regional geology

2.1 Introduction | 2.1 |
2.2 Physiography | 2.1 |
2.3 Regional Geology | 2.4 |
2.3.1 Stratigraphy | 2.5 |
2.3.2 Palaeoproterozoic | 2.5 |
2.3.3 Mesoproterozoic | 2.9 |
2.3.4 Archaean | 2.14 |
2.4 Summary | 2.21 |

Chapter 3: Prospect geology: The Palaeoproterozoic

3.1 Introduction | 3.1 |
3.2 Palaeoproterozoic stratigraphy | 3.1 |
3.2.1 Western suite | 3.5 |
3.2.2 The central suite | 3.7 |
3.2.3 Eastern suite | 3.10 |
3.3 Determination of the metamorphic history at Menninnie | 3.12 |
3.3.1 Methods | 3.12 |
3.3.2 Analytical results | 3.13 |
3.3.3 Thermobarometric calculations | 3.16 |
3.4 Granite dykes | 3.22 |
3.4.1 MD granite dyke description | 3.22 |
3.4.2 Granite dyke geochemistry | 3.24 |
3.5 Deformation | 3.28 |
3.5.1 Deformation of the western suite | 3.30 |
3.5.2 Deformation of the central suite | 3.32 |
3.5.3 Eastern suite | 3.32 |
3.6 Pegmatite dykes | 3.32 |
3.7 Metasomatism | 3.34 |
3.7.1 Mineralogy | 3.36 |
3.7.2 Metasomatic mineral textures | 3.36 |
3.8 Discussion | 3.39 |
3.8.1 Origin of the central suite calc-silicates | 3.39 |
3.8.2 Regional correlations and implications for the Menninnie Dam | 3.40 |
 stratigraphy | |
3.8.3 Timing of deformation and MD granite dyke emplacement | 3.44 |
3.8.4 Timing of metasomatism | 3.46 |
3.9 Summary | 3.47 |
Table of contents cont.

Chapter 4: Local geology: The Mesoproterozoic

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Introduction</td>
<td>4.1</td>
</tr>
<tr>
<td>4.2 Geological setting</td>
<td>4.1</td>
</tr>
<tr>
<td>4.3 Prospect geology</td>
<td>4.4</td>
</tr>
<tr>
<td>4.3.1 Rhyolite intrusions Description</td>
<td>4.6</td>
</tr>
<tr>
<td>4.3.2 Polymictic breccia units</td>
<td>4.7</td>
</tr>
<tr>
<td>DP breccia units</td>
<td>4.9</td>
</tr>
<tr>
<td>Fiamme-bearing DP breccia units</td>
<td>4.11</td>
</tr>
<tr>
<td>Alteration of DP breccias</td>
<td>4.12</td>
</tr>
<tr>
<td>Association of DP breccias and faults</td>
<td>4.12</td>
</tr>
<tr>
<td>Rhyolite-bearing DP breccias</td>
<td>4.12</td>
</tr>
<tr>
<td>Interpretation of rhyolite-bearing DP breccias</td>
<td>4.16</td>
</tr>
<tr>
<td>LP breccia units</td>
<td>4.17</td>
</tr>
<tr>
<td>Rhyolite-bearing LP breccia</td>
<td>4.20</td>
</tr>
<tr>
<td>4.3.3 Coherent rhyolite</td>
<td>4.26</td>
</tr>
<tr>
<td>4.3.4 Muddy sandstone and pumice breccia units</td>
<td>4.26</td>
</tr>
<tr>
<td>4.3.5 Geochemistry of rhyolite intrusions, peperites and coherent rhyolite</td>
<td>4.28</td>
</tr>
<tr>
<td>4.3.6 Menninnie Dam Ignimbrite (MD ignimbrite)</td>
<td>4.32</td>
</tr>
<tr>
<td>Description</td>
<td>4.32</td>
</tr>
<tr>
<td>MD ignimbrite in the basal 34m of drill hole PD0032</td>
<td>4.40</td>
</tr>
<tr>
<td>4.4 Discussion</td>
<td>4.43</td>
</tr>
<tr>
<td>4.4.1 Rhyolite intrusions elsewhere in the Gawler Range Volcanic Province</td>
<td>4.43</td>
</tr>
<tr>
<td>4.4.2 Interpretation of DP breccias Fluidisation</td>
<td>4.44</td>
</tr>
<tr>
<td>4.4.3 Interpretation of LP breccias</td>
<td>4.47</td>
</tr>
<tr>
<td>4.4.4 Interpretation of the rhyolite-bearing LP breccia</td>
<td>4.49</td>
</tr>
<tr>
<td>4.4.5 Interpretation of fiamme-bearing DP breccias</td>
<td>4.50</td>
</tr>
<tr>
<td>4.4.6 Interpretation of muddy sandstone and pumice breccia</td>
<td>4.50</td>
</tr>
<tr>
<td>4.4.7 Genetic model for the formation of polymictic breccias, coherent rhyolite, muddy sandstone and pumice breccia units</td>
<td>4.51</td>
</tr>
<tr>
<td>4.4.8 Interpretation of the MD ignimbrite Origin of lithic clasts in the MD ignimbrite</td>
<td>4.53</td>
</tr>
<tr>
<td>4.4.9 Genetic model for the MD ignimbrite</td>
<td>4.54</td>
</tr>
<tr>
<td>4.4.10 Distribution of lithic clasts in the MD ignimbrite</td>
<td>4.57</td>
</tr>
<tr>
<td>4.4.11 Timing and duration of Mesoproterozoic intrusive and volcanic events at Menninnie Dam</td>
<td>4.57</td>
</tr>
<tr>
<td>4.4.12 Timing of metasomatism</td>
<td>4.57</td>
</tr>
<tr>
<td>4.5 Summary</td>
<td>4.58</td>
</tr>
</tbody>
</table>

Chapter 5: Sulphide mineralisation

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Introduction and previous work</td>
<td>5.1</td>
</tr>
<tr>
<td>5.2 Mineralisation in the northern and central zones</td>
<td>5.2</td>
</tr>
<tr>
<td>5.2.1 Relationship between sulphides and host rocks</td>
<td>5.4</td>
</tr>
<tr>
<td>5.2.2 Sulphide and gangue mineralogy</td>
<td>5.5</td>
</tr>
<tr>
<td>5.2.3 Sulphide and gangue mineral textures and their paragenesis</td>
<td>5.5</td>
</tr>
<tr>
<td>Sulphides hosted by marbles</td>
<td>5.7</td>
</tr>
<tr>
<td>Sulphides hosted by diopsidic rocks</td>
<td>5.17</td>
</tr>
<tr>
<td>Sulphides hosted by marbles and diopsidic rocks</td>
<td>5.19</td>
</tr>
<tr>
<td>Mineralisation hosted by DP and LP breccias</td>
<td>5.19</td>
</tr>
<tr>
<td>Mineralisation hosted by granite dykes, graphitic schist, eastern and western suite schists</td>
<td>5.21</td>
</tr>
<tr>
<td>5.3 Mineralisation in the southern zone</td>
<td>5.21</td>
</tr>
<tr>
<td>Distribution of sulphides</td>
<td>5.21</td>
</tr>
<tr>
<td>Late alteration overprint</td>
<td>5.22</td>
</tr>
<tr>
<td>5.3.1 Relationship between sulphides and host rocks</td>
<td>5.22</td>
</tr>
</tbody>
</table>
Table of contents cont.

5.3.2 Sulphide and gangue mineralogy and textures 5.23
 MD ignimbrite hosted mineralisation ... 5.29
5.4 Chemical analysis of mineralised zones 5.31
 5.4.1 Spatial variations in mineralisation chemistry 5.32
5.5 Mineral chemistry ... 5.34
 5.5.1 Method ... 5.34
 5.5.2 Results ... 5.34
5.6 Discussion .. 5.40
 5.6.1 Sulphide textures .. 5.40
 5.6.2 Paragenetic stages .. 5.41
 5.6.3 Association of mineralisation with fractures and brittle faults 5.42
 5.6.4 Inclusions of chalcopyrite in sphalerite 5.43
 5.6.5 Spatial distribution of metals ... 5.45
 5.6.6 Mineral chemistry .. 5.45
 5.6.7 Relative timing of DP breccias and rhyolite dykes 5.46
 5.6.8 Relative timing of mineralisation, the MD ignimbrite and the late
 alteration overprint .. 5.46
 5.7 Summary ... 5.47

Chapter 6: Gravity and magnetic modelling
 6.1 Introduction .. 6.1
 6.2 Methods .. 6.2
 6.3 Gravity and magnetic data ... 6.2
 6.4 Transect lines ... 6.2
 6.5 Nature and distribution of lithologies 6.3
 6.6 Rock Densities .. 6.7
 6.7 Magnetics susceptibility ... 6.9
 6.8 Results of geophysical modelling .. 6.11
 6.9 Discussion ... 6.16
 6.10 Conclusions .. 6.19

Chapter 7: Lead isotopes
 7.1 Introduction .. 7.1
 7.2 Lead isotope data ... 7.1
 7.3 Analytical methods ... 7.2
 7.4 Results ... 7.2
 7.4.1 Lead isotope ratio plots ... 7.3
 7.4.2 Feldspar analyses .. 7.4
 7.4.3 Galena analyses .. 7.7
 7.4.4 Whole rock analyses .. 7.10
 7.4.5 Isotopic ratios versus lead assay 7.12
 7.5 Discussion ... 7.12
 7.5.1 Range of Pb isotopic determinations for the Hiltaba Suite granites 7.12
 7.5.2 Isotopic ratios versus lead assay 7.12
 7.5.3 Source of the lead ... 7.14
 7.5.4 Spatial distribution of lead isotope ratios 7.19
 7.5.5 Interpretation of lead isotopes from the rhyolite intrusion 7.21
 7.5.6 Isotopic ratios of the southern zone 7.23
 7.5.7 Lead model age for the Menninnie Dam mineralisation 7.23
 7.5.8 Mixing of granite derived lead and host rock derived lead 7.25
 7.6 Summary .. 7.28

Chapter 8: Timing of mineralisation
 8.1 Introduction .. 8.1
 8.2 Interpretation of geological constraints for the timing of mineralisation 8.1
 8.3 U-Pb zircon dating of the rhyolite intrusions 8.3
 8.3.1 Introduction .. 8.3
 8.3.2 Ion - microprobe procedures .. 8.4
Table of contents cont.

8.3.3 Results ... 8.5
8.4 Timing of the late alteration overprint 8.9
8.5 Discussion ... 8.10
8.6 Summary ... 8.10

Chapter 9: Fluid inclusions
9.1 Introduction .. 9.1
9.2 Method of studies ... 9.1
9.3 Classification of fluid inclusion types 9.2
9.4 Fluid inclusion petrography and microthermometric measurements .. 9.4
9.4.1 Type P2, P3, S1, S2, and S2a fluid inclusions hosted by sphalerite 2 ... 9.4
9.4.2 Type S1, P2 and P3 fluid inclusions hosted by quartz 1 .. 9.9
9.4.3 Type S2 and S3 fluid inclusions in SA rhyolite intrusions ... 9.12
9.4.4 Type P2 and P3 fluid inclusions hosted by quartz 3 ... 9.14
9.5 Fluid inclusion salt compositions .. 9.16
9.6 Discussion ... 9.19
9.6.1 Fluid inclusions hosted by sphalerite 2 9.19
9.6.2 Fluid inclusion salinities ... 9.20
9.6.3 Fluid inclusion trapping temperatures 9.20
9.6.4 Trapping temperature vs salinity diagrams and fluid mixing ... 9.27
9.6.5 Mineral inclusions in primary and secondary fluid inclusions - daughter minerals or accidentals? .. 9.29
9.6.6 Comparison of fluid inclusions in the rhyolite intrusion, quartz 1 and sphalerite 2 ... 9.30
9.6.7 Composition of the mineralising fluid 9.32
9.6.8 Composition of the late alteration overprint fluid 9.33
9.7 Summary ... 9.36

Chapter 10: Stable isotopes
10.1 Introduction ... 10.1
10.2 Oxygen and carbon isotopes .. 10.1
10.2.1 Sample selection ... 10.2
10.2.2 Analytical methods ... 10.3
10.2.3 Results ... 10.4
10.2.4 Discussion .. 10.4
10.2.4.1 Host rock carbonates ... 10.6
10.2.4.2 Hydrothermal carbonates ... 10.6
Interpretation of isotopic values from intra-mineralisation carbonates .. 10.9
Interpretation of margin carbonates ... 10.17
Isotopic halos to mineralisation ... 10.18
Late alteration overprint carbonate ... 10.20
10.2.5 Summary ... 10.22
10.3 Silicate oxygen and hydrogen - deuterium isotopes 10.23
10.3.1 Samples .. 10.23
10.3.2 Methods .. 10.23
10.3.4 Discussion .. 10.26
10.3.4.1 Calculation of fluid isotopic values 10.26
10.3.4.2 Source of the mineralising fluids 10.29
10.3.4.3 Source of the late alteration overprint fluids 10.32
10.3.5 Summary ... 10.32
10.4 Sulphur isotopes .. 10.33
10.4.1 Previous work .. 10.33
10.4.2 Method and samples .. 10.34
10.4.3 Results ... 10.35
10.4.4 Discussion .. 10.39
10.4.4.1 Sulphur isotopes from northern and central zones mineralisation .. 10.39