Petroleum source rocks, maturation and thermal history, onshore Tasmania.

Alan D. Chester. B.Ed., B.Sc. (Hons.)

Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy. University of Tasmania.

Declaration of originality and statement of authority of access.

This thesis contains no material which has been accepted for a degree or diploma by the University or any other institution, except by way of background information and duly acknowledged in the thesis. To the best of my knowledge and belief the thesis contains no material previously published or written by another person except where due acknowledgement is made in the text of the thesis.

This thesis may be made available for loan and limited copying in accordance with the Copyright Act 1968.

Alan D. Chester.

July 2007
ABSTRACT.

Discoveries of bitumen, oil and gas have been made in onshore Tasmania associated with rocks ranging in age from Neoproterozoic to Permian, suggesting that three stacked petroleum systems may occur. The three petroleum systems identified are named Centralian, Larapintine 2 and Gondwanan. As yet no commercial discoveries of oil or gas have been made in these systems. A basin wide reconnaissance level investigation was undertaken, using outcrop samples, to determine petroleum source potential and thermal maturity of available source rocks. The findings add to the basic geoscientific knowledge of these systems and provide a basis for realistic planning of petroleum exploration.

The Kubler Indices of potential Neoproterozoic source rocks were measured to try and overcome the unreliability of maturity results found when using Rock-Eval pyrolysis on outcrop samples. Kubler Indices of potential Neoproterozoic source rocks shows they have very high thermal maturity, up to greenschist facies, so there is no possibility of a viable Centralian petroleum system. Results of Kubler Indices analysis were used to map regional variations in metamorphic grade of northwest Tasmania.

Within the potential Ordovician source rocks the high organic content beds are thin (<200 mm thick) and rare with discontinuous distributions. Even these thin beds have low source potential as measured by Rock-Eval pyrolysis (Hydrogen Index 3-106, average 40, S1 + S2 average 0.3), probably due to the high maturity (Tmax 465-496°C). No evidence for petroleum migration pathways were found during field investigations however hydrocarbon gases were extracted from outcrop samples and identified by gas chromatographic analysis. Biomarker analysis of extracts from Gordon Group samples indicates the hydrocarbons were locally derived from an algal/bacterial source deposited in an anoxic environment. Sterane distribution indicates marine oil derived from carbonates consistent with source rocks within the Gordon Group. Examination of cross cutting relationships of mineralised and bituminous veins from possible Mississippi Valley-type Pb-Zn deposits, hosted by Gordon Group, indicates oil generation occurred in the Early Devonian before
Tabberabberan trap development. Maximum palaeotemperatures were developed due to tectonic thickening during the mid-Devonian Tabberabberan folding and thrusting. This study found that there is no exploration potential within the Larapintine 2 petroleum system of onshore Tasmania.

Previous studies identified potential source rocks within the Parmeener Supergroup and this study found further potential coal and associated siltstone source rocks with high total organic content and high hydrogen index values (TOC up to 75%, HI 442) indicating excellent potential. Maturity within the oil window was determined by Rock-Eval pyrolysis T_{max} and vitrinite reflectance. Vitrinite reflectance data from coal exploration was collated with data obtained from Rock-Eval pyrolysis and vitrinite reflectance on samples obtained during this study to confirm previous basin maturity assessments.

Near Zeehan, a breached reservoir, in Upper Permian sandstone contains relict bitumen sourced from Permian siltstone and coal. This is positive evidence that the Gondwanan petroleum system has generated petroleum. A potential complication is that depositional conditions for source rocks and higher heat flows during the Cretaceous may have provided conditions suitable for petroleum generation in western Tasmania that did not apply in the Tasmania Basin.

Only the Gondwanan petroleum system is a potential exploration target for onshore Tasmania as source rocks, within the oil and gas maturity range, are widespread across the southern Tasmania Basin. However, the search for suitable trap structures in the complexly faulted sequence will be difficult. Both the Larapintine 2 and Centralian petroleum systems are over mature throughout Tasmania making them poor exploration targets.
ACKNOWLEDGEMENTS.

An Australian Postgraduate Award Industry (APAI), the University of Tasmania and Great South Land Minerals supported this research.

The project was initiated by Malcolm Bendall (Chairman of Great South Land Minerals), who has been the driving force behind the current investigations into the possibility of oil or gas being found onshore Tasmania. I would like to thank my supervisors Dr. Clive Burrett, Dr. Peter Haines, Dr. Ron Berry and Dr. Pat Quilty for their help and guidance.

Dr. Catherine Reid gave me valuable help in the day-to-day processes of research and was always ready to discuss ideas. Dr. Garry Davidson offered suggestions, which led to an investigation of the Centralian petroleum system. Dr. Alan Cook performed the vitrinite and bitumen reflection measurements and during discussions offered ideas that led to the discovery of the source for the bitumen found at Comstock mine. Dr. Ralph Bottrill arranged for the Mineral Resources Tasmania Laboratory to analyse samples for Kubler Index. Dr. Noel Davies from Central Science Laboratories, University of Tasmania, extracted and analysed gases from samples of Gordon Limestone. Carmelina Valente from AMDEL, Adelaide, gave me some useful advice about selection of appropriate geochemical procedures and sampling techniques.

Simon Stephens prepared the thin sections used in this study. Paul Heath gave assistance in locating samples of bitumen at the Comstock mine.

Katie McGoldrick gave advice and assistance in relation to the preparation of samples for geochemical analysis. Michael Pemberton arranged for permits so that I could sample sites within National Parks. Direct help and valuable informal discussions were also forthcoming from my office companions Kate Bull, Robin Cantrill, Mawson Croaker, Lee Evans, Russell Fulton, Jubo Liu, Nicky Pollington, and Andrew Stacey.

I would also like to thank my wife Helena for encouraging me during the project and for putting up with me living away from home.
TABLE OF CONTENTS.

Abstract. ... i
Acknowledgements. .. iii
Table of contents. .. iv
List of figures. .. viii
List of tables. .. xi
List of appendices. .. xii

CHAPTER ONE: Petroleum Exploration Onshore Tasmania. 1
1.1. Introduction. ... 1
1.2. Outline of historical search for oil and gas onshore Tasmania. 1
1.3. Aims of this project. ... 4
1.4. Previous work. ... 5
1.5. Assumptions on which this study is based. 7
1.6. Methods used. ... 11
1.7. Lithostratigraphic overview. .. 12

CHAPTER TWO: Geological History of Tasmania....................... 16
2.1. Introduction. ... 16
2.2. Mesoproterozoic-Neoproterozoic. ... 17
2.3. Cambrian. ... 23
2.4. Late Cambrian-Ordovician. .. 24
2.5. Ordovician. .. 26
2.6. Silurian-Devonian. .. 34
2.7. Devonian deformation. ... 36
2.8. Mid Devonian granitoid emplacement. ... 36
2.9. Carboniferous. ... 38
2.10. Permian. ... 38
2.11. Triassic. .. 40
2.12. Jurassic-Cretaceous. ... 41
2.13. Tertiary. ... 41
2.14. Summary. .. 42
CHAPTER THREE: Petroleum Source Rock Potential, Onshore Tasmania

3.1. The importance of source rocks ... 45
3.2. Characteristics of an ideal source rock .. 45
3.3. Results of investigations into source rock potential of Proterozoic sequences in northwest Tasmania .. 48
3.4. Results of investigations into Ordovician Gordon Group source potential ... 50
 3.4.1. Depositional environments within the Gordon Group and the potential for source rocks ... 50
 3.4.2. Rock-Eval pyrolysis results from Upper Limestone Member of the Benjamin Limestone ... 55
 3.4.3. Analysis of biomarkers from Upper Limestone Member of the Benjamin Limestone ... 57
 3.4.3.1. Calculated vitrinite reflectance from aromatic maturity indicators ... 57
 3.4.3.2. Genetic affinity .. 59
 3.4.3.3. Source affinity .. 60
 3.4.3.4. Maturity ... 60
 3.4.3.5. Source rock type ... 62
 3.4.4. Gas chromatograms of alkanes extracted from Gordon Group 63
 3.4.5. Evidence of gas generated by Gordon Group 64
 3.4.6. Discussion of results .. 65
3.5. Results of investigations into Permian freshwater coal source potential ... 68
 3.5.1. Discussion of results .. 68
3.6. Results of investigations into the source potential of Lower Freshwater Mersey Coal Measures correlates 70
 3.6.1. Discussion of results of analysis of torbanite 71
3.7. Summary of potential source rocks identified and their distributions onshore Tasmania ... 74
 3.7.1. Source potential of the Mesoproterozoic?-Neoproterozoic sequences .. 75
3.7.2. Source potential of the Ordovician Gordon Group 75
3.7.3. Source potential of Upper Permian coals 76
3.7.4. Source potential of Mersey Coal Measures correlates 76
3.7.5. Summary .. 77

CHAPTER FOUR: Metamorphism in Tasmania and Maturity of Potential Source Rocks .. 78
4.1. Concept of maturity .. 78
4.2. Common methods for measuring organic maturity of source rocks ... 79
4.3. Previous maturity investigations onshore Tasmania 81
 4.3.1. Maturity of Permian and Triassic coals 81
 4.3.2. Maturity of Gordon Group based on Colour Alteration Index ... 86
 4.3.3. Lopatin method for establishing maturity in the Tasmania Basin .. 87
4.4. Results of maturity investigations of Proterozoic sequences in northwest Tasmania .. 87
 4.4.1. Kubler Index and its relationship to petroleum source rock maturity .. 88
 4.4.2. Methods used to determine maturity of Proterozoic sequences in northwest Tasmania ... 92
 4.4.3. Results of maturity investigations of Proterozoic sequences in northwest Tasmania .. 92
 4.4.4. Orientation of white micas in KI samples 93
 4.4.5. Discussion of results ... 96
 4.4.5.1. Discussion of disparity between Rock-Eval pyrolysis maturity and Kubler Index maturity assessment within the Rocky Cape Block ... 100
4.6. Results of maturity analysis of the Ordovician Gordon Group 101
 4.6.1. Discussion of Rock-Eval pyrolysis maturity results for the Gordon Group ... 103
4.7. Discussion of possible reasons for the high maturity values in Ordovician Gordon Group samples ... 105
4.8. Results of maturity investigations on the Upper Permian
sediments within the Tasmania Basin... 121
4.9. Modern geothermal gradients in Tasmania.......................... 127
 4.9.1. Modern measurement of geothermal gradients in Tasmania... 128
 4.9.2. Possible reasons for high heat flows in Tasmania............ 131
 4.9.2.1. Effects of granites. ... 132
 4.9.2.2. Mantle plume. ... 132
4.10. Potentially mature zones onshore Tasmania..................... 133

CHAPTER FIVE: Explanations for Bitumen Occurrences,
Onshore Tasmania.. 138
5.1. Introduction, historical occurrences of bitumen and oil seeps
onshore Tasmania... 138
5.2. Evidence of petroleum expulsion and migration onshore
Tasmania... 139
5.3. Probable timing of petroleum expulsion events................. 140
 5.3.1. Proterozoic bitumen generation.. 141
 5.3.2. Petroleum generation from Ordovician sources............ 143
 5.3.3. Petroleum generation from Permian sources................. 150
5.4. Relationships between sightings of seeps and seismic events... 157
 5.4.1. Seep detection. .. 158
5.5. Potential reservoirs for the Larapintine 2 petroleum system,
onshore Tasmania.. 159
 5.5.1. Potential palaeokarst reservoirs.................................... 159
 5.5.2. Potential for fractured reservoirs.................................. 165
5.6. Conclusions regarding petroleum generation, onshore
Tasmania... 166

CHAPTER SIX: Conclusions in Respect to Hydrocarbon
Exploration Potential of the Sequences Investigated,
Onshore Tasmania.. 168
6.1. Larapintine 2 petroleum system... 168
6.2. Potential for Neoproterozoic hydrocarbon source rocks,
onshore Tasmania.. 170
6.3. Hydrocarbon potential of Permian coals and associated
siltstones, onshore Tasmania. ... 172

6.4. Conclusions in regard to overall petroleum prospectivity, onshore Tasmania. ... 173

LIST OF FIGURES.

1.1. Map of places mentioned in Chapter One.................................2
1.2. Larapintine 2 petroleum system components, onshore Tasmania.. 8
1.3. Known outcrop of potential source rocks for the three potential petroleum systems, onshore Tasmania.10
1.4. Time-Space diagram for Tasmania showing the relationships of the three petroleum systems considered....................11
2.1. Map of locations mentioned in Chapter Two.18
2.2. Stratigraphic column for the Rocky Cape Group.19
2.3. Photograph of ripple casts on Cowrie Siltstone20
2.4. Stratigraphic column for the Togari Group.21
2.5. Evolution of the Denison Range. ..26
2.6. Stratigraphic column for the Gordon Group.27
2.7. Probable palaeogeography of Tasmania during the Late Ordovician. ...28
2.8. Late Ordovician palaeogeography of the world and Tasmanian regions. ..29
2.9. Probable palaeogeography of Tasmania for some intervals in the Ordovician..30
2.10. Stratigraphic column for the Tiger Range Group.35
2.11. Stratigraphic column for the Eldon Group............................35
2.12. Trends of Devonian folding and thrusting............................37
2.13. Generalised stratigraphic column for the Permian in Tasmania..40
2.14. Geological timescale of events of significance to deposition of petroleum source rocks...44
3.1. Major source rock intervals correlated with major second order transgressions...47
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2</td>
<td>Photomicrograph of bitumen inclusion in basalt.</td>
<td>48</td>
</tr>
<tr>
<td>3.3</td>
<td>Stratigraphic column for Upper Benjamin Limestone.</td>
<td>54</td>
</tr>
<tr>
<td>3.4</td>
<td>Genetic affinity and maturity plot for Gordon Group sample.</td>
<td>59</td>
</tr>
<tr>
<td>3.5</td>
<td>Oil source affinity plot for Gordon Group sample.</td>
<td>60</td>
</tr>
<tr>
<td>3.6</td>
<td>Sterane maturity-migration plot for Gordon Group sample.</td>
<td>61</td>
</tr>
<tr>
<td>3.7</td>
<td>Sterane distribution for Gordon Group sample.</td>
<td>62</td>
</tr>
<tr>
<td>3.8</td>
<td>Gas chromatogram for alkane distribution for Gordon Group sample.</td>
<td>63</td>
</tr>
<tr>
<td>3.9</td>
<td>Gas chromatogram of major gases extracted from Gordon Group sample.</td>
<td>65</td>
</tr>
<tr>
<td>3.10</td>
<td>Gas chromatogram of minor gases extracted from Gordon Group sample.</td>
<td>65</td>
</tr>
<tr>
<td>3.11</td>
<td>Palaeogeography for the deposition of Cygnet Coal Measures</td>
<td>69</td>
</tr>
<tr>
<td>3.12</td>
<td>Palaeogeography for the deposition of Mersey Coal Measures</td>
<td>74</td>
</tr>
<tr>
<td>4.1</td>
<td>Correlation chart of maturity indexes.</td>
<td>82</td>
</tr>
<tr>
<td>4.2</td>
<td>Maturity map of the Tasmania Basin.</td>
<td>84</td>
</tr>
<tr>
<td>4.3</td>
<td>Correlation chart for commonly used maturation indices and palaeotemperature.</td>
<td>91</td>
</tr>
<tr>
<td>4.4</td>
<td>Photomicrograph of sample from Rocky Cape Block showing white mica orientation.</td>
<td>94</td>
</tr>
<tr>
<td>4.5</td>
<td>Photomicrograph of strained sample from Rocky Cape Block showing rotated white mica.</td>
<td>95</td>
</tr>
<tr>
<td>4.6</td>
<td>Sample sites and palaeotemperature contours for northwest Tasmania.</td>
<td>98</td>
</tr>
<tr>
<td>4.7</td>
<td>Correlation chart for Kubler Index and palaeotemperature.</td>
<td>99</td>
</tr>
<tr>
<td>4.8</td>
<td>Generative potential of source rocks at various levels of maturity.</td>
<td>105</td>
</tr>
<tr>
<td>4.9</td>
<td>Inferred reconstruction of cross section of the Florentine Valley.</td>
<td>107</td>
</tr>
<tr>
<td>4.10</td>
<td>Map of Tasmania showing Devonian-Carboniferous maximum palaeotemperatures.</td>
<td>109</td>
</tr>
<tr>
<td>4.11</td>
<td>Inferred cross section of Mole Creek and eastern Gog Range showing possible thrust structures.</td>
<td>113</td>
</tr>
<tr>
<td>4.12</td>
<td>Map showing locations of features and places related to thrusts in western Tasmania.</td>
<td>115</td>
</tr>
</tbody>
</table>
4.13. Structural interpretation of part of the Lyell 1:50 000 geological map ... 116
4.14. Inferred reconstruction of cross section through Victoria Pass ... 117
4.15. Inferred reconstruction of cross section along main range, Queenstown ... 118
4.16. Map showing places mentioned in south coast region of Tasmania .. 119
4.17. Inferred reconstruction of cross section across southern Tasmania .. 120
4.18. Photographs of bitumen-stained sandstone outcrops near the Badger River ... 122
4.19. Fluorescent-mode photomicrograph of thin section of Permian sandstone .. 123
4.20. Palaeogeography of parts of Gondwana close to Tasmania during the Jurassic ... 126
4.21. Contours of modern geothermal gradients, onshore Tasmania .. 130
4.22. Potential prospective zone for stacked petroleum systems in the southern Tasmania Basin 136
5.1. Centralian petroleum system event diagram .. 143
5.2. Photomicrograph of pyrobitumen filled pores within Gordon Group rock ... 144
5.3. Photomicrograph of pyrobitumen filled stylolites crosscutting earlier carbonate veining within Gordon Group rock ... 146
5.4. Photomicrograph of sulphide mineralisation associated with pyrobitumen veins within Gordon Group rock ... 147
5.5. Larapintine petroleum system event diagram .. 150
5.6. Comparison of GC-MS traces from analysis of Comstock and Gordon Group derived bitumen samples ... 153
5.7. Chart comparing Rock-Eval pyrolysis results from siltstones and coals of Cygnet Coal Measures correlates ... 154
5.8. Map showing outcrop distribution for Cygnet Coal Measures ... 156
5.9. Gondwanan petroleum system event diagram .. 157
5.10. Map of cave system at Ida Bay ... 164
6.1. Larapintine Seaway .. 168
6.2. Component basins of the Centralian Superbasin .. 171

LIST OF TABLES.

3.1. Rock-Eval pyrolysis data from Cowrie Siltstone 49
3.2. Selected items from results of Rock-Eval pyrolysis of
Gordon Group samples. ... 56
3.3. Aromatic maturity results from Gordon Group sample 57
3.4. Selected components from Rock-Eval pyrolysis results from
Cygnet Coal Measures and correlates .. 70
3.5. Selected components of Rock-Eval pyrolysis results from
samples of torbanite from the Lower Freshwater sequence of the
Parmeener Supergroup ... 71
4.1. Compilation of maturity measurements made on coal and
samples from stratigraphic drilling within the Tasmania Basin 83
4.2. Locations and data from numbered points on Figure 4.2 85
4.3. Rock-Eval pyrolysis results from samples in the
Rocky Cape Block ... 88
4.4. Mean Kubler Index values for sites across the Rocky Cape Block. 93
4.5. Rock-Eval pyrolysis results for the Gordon Group 102
4.6. Details of numbered points shown on Figure 4.10 111
4.7. Permian Rock-Eval pyrolysis results ... 121
4.8. Variations in heat capacity (Q) of a range of lithological
types and their average content of radioactive trace elements 127
4.9. Geothermal gradients from Tasmanian onshore locations 129
4.10. Geothermal gradients from Bass Strait petroleum exploration
wells .. 129
4.11. Geothermal gradients in western Victoria 133
4.12. Locations, lithology and references for basement interpretation
used in Figure 4.22 ... 135
5.1. Potential source rocks in northwestern Tasmania 142
LIST OF APPENDICES.

A. Rock-Eval pyrolysis.
B. Rock-Eval pyrolysis data.
C. Sample locations.
D. Kubler Index results.
E. Biomarker geochemistry results.
F. Report 1 by Alan Cook.
G. Report 2 by Alan Cook.
H. Total organic carbon results.
J. Latitude and longitude of Tasmanian localities mentioned in thesis.
K. Map showing sites of interest to oil and gas exploration and maturity contours for Larapintine and Gondwanan petroleum systems.