CORSnet-NSW Adjustable Antenna Mount (CAAM) for GNSS CORS

Russell Commins and Volker Janssen

NSW Land and Property Information, Bathurst, Australia

Russell.Commins@lpi.nsw.gov.au Volker.Janssen@lpi.nsw.gov.au

Introduction

Global Navigation Satellite System (GNSS) Continuously Operating Reference Station (CORS) networks are being built and expanded around the world, contributing to the definition and realisation of geodetic reference frames as well as providing reliable and accurate positioning infrastructure for a wide range of applications. CORSNET-NSW is a rapidly growing network of GNSS CORS providing fundamental positioning infrastructure for New South Wales, Australia that is accurate, reliable and easy to use [1,2].

CORSNET-NSW contributes to the Asia-Pacific Reference Frame (APRF) project [3] and provides a platform for research and innovation involving satellite positioning technology. The network also supports a wide range of GNSS applications in areas such as surveying, agriculture, mining and construction. It is built, owned and operated by Land and Property Information (LPI), a division of the NSW Department of Finance and Services. Currently consisting of about 100 permanent stations tracking multiple satellite constellations, efforts are underway to expand CORSNET-NSW to over 140 stations by the end of 2014 (Figure 1).

GNSS antenna mounts are the devices used to connect the GNSS antenna to the survey monument. The antenna monument secures the GNSS antenna mount to bedrock, the ground or the building (or structure) used as foundation. Reinforced concrete pillars and deep-drilled braced monuments are recognised as the most stable and economic GNSS CORS structures acceptable for IGS sites [4]. In Australia, the reinforced concrete pillar is the preferred monument for CORS networks stations of national significance. Regional or state-wide CORS networks, such as CORSNET-NSW, generally also allow free-standing poles and wall monuments securely attached to buildings (Figure 2). These monuments should have widths that are less than the antenna diameter to minimise multipath off the top surface of the monument and to ensure that antenna cables can be easily attached. The distance between the top of the antenna monument and the base of the GNSS antenna should be less than 50 mm or greater than one GNSS carrier phase wavelength [5]. For some GNSS antennas, the monument top must either have a diameter of less than 85 mm or a bevelled edge to allow space for the antenna cable to pass (Figure 3).

Antenna mounts connect the GNSS antenna to the monument. In all cases, it is desirable to orient the CORS antenna to True North in order to gain maximum benefit from GNSS antenna modelling. Other requirements generally include the unambiguous definition of the survey mark below the antenna (supporting a clear definition of Antenna Reference Point, ARP), a zero or negative adjustment allowing the antenna more rotation before it tightens. If one screw is rotated more or less than the others, the spigot will naturally try to tilt to one side. However, due to the thickness of the top plate it is not possible to adjust the three screws unevenly to any significant degree. A small tolerance allows the centre spigot enough freedom to move within the top of the mount during the adjustment process, while still keeping it vertical to within 0.25 mm. The spigot is adjusted as follows:

1) Screw the GNSS antenna on firmly and take note of how far the antenna is required to rotate (clockwise or anti-clockwise) before it faces True North.
2) Remove the antenna.
3) Turn each of the three adjustment screws using an Allen key. If the antenna needs to rotate 30° clockwise, turn each of the three screws approximately 30° clockwise.
4) Screw the antenna on firmly again and check for direction.
5) Repeat this procedure until the direction is correct.

Contrary to conventional antenna mounts, if a GNSS antenna needs to be replaced, the new antenna can be installed and oriented to True North without introducing an antenna height. Often, these mounts also contain removable parts, which negatively affects traceability of the survey mark and the ARP.

The CORSNET-NSW Adjustable Antenna Mount (CAAM) was developed by LPI and a patent has been issued (Australian Patent No. 2012200770) [7]. It was purposely designed to be incorporated into (rather than simply attached to) stainless steel antenna masts located on buildings and free-standing pole monuments, but can also be used for pillar monuments. The CAAM (Figure 6) incorporates the following design specifications:

- Easily adjustable to True North without introducing an antenna height.
- Cost-effective and maximum traceability of the survey mark.
- Integrated into the mount without any removable parts or entry points (e.g. to exclude insects).
- Simple to manufacture locally from readily available parts.
- Robust construction, made entirely from stainless steel.
- Adjustment procedure requiring minimal tools (i.e. one Allen key).
- In case the adjustment mechanism fails (worst case scenario), the survey mark is still usable.

Antenna mounts are an essential part of any GNSS CORS installation. Currently available GNSS antenna mounts are not ideal because they need to be installed on top of the antenna monument, thereby introducing an antenna height. Often, these mounts also contain removable parts, which negatively affects traceability of the survey mark and the ARP. The CORSNET-NSW Adjustable Antenna Mount (CAAM) addresses these disadvantages, providing an easy-to-use alternative that is free of removable parts and integrated into the antenna monument. It was purposely designed for CORSNET-NSW CORS installations which use antenna masts attached to buildings and free-standing pole monuments. However, the CAAM can also be used for concrete pillar monuments, by eliminating the need to introduce an antenna height if an antenna is replaced. LPI encourages adoption of the CAAM.

Conclusions

Antenna mounts are essential part of any GNSS CORS installation. Currently available GNSS antenna mounts are not ideal because they need to be installed on top of the antenna monument, thereby introducing an antenna height. Often, these mounts also contain removable parts, which negatively affects traceability of the survey mark and the ARP. The CORSNET-NSW Adjustable Antenna Mount (CAAM) addresses these disadvantages, providing an easy-to-use alternative that is free of removable parts and integrated into the antenna monument. It was purposely designed for CORSNET-NSW CORS installations which use antenna masts attached to buildings and free-standing pole monuments. However, the CAAM can also be used for concrete pillar monuments, by eliminating the need to introduce an antenna height if an antenna is replaced. LPI encourages adoption of the CAAM.

References