Impacts of Wildlife Grazing on Pastures in the Midlands, Tasmania

By Rowan William Smith
B. Agr. Sc. (Hons)
University of Tasmania

This thesis is submitted in fulfilment of the requirement for the degree of Doctor of Philosophy at the University of Tasmania

Launceston
August 2012
Statements and Declarations

Statement of Originality
This thesis contains no material which has been accepted for a degree or diploma by the University or any other institution, except by way of the background information and duly acknowledged in the thesis, and to the best of my knowledge and belief no material previously published or written by another person except where due acknowledgement is made in the text of the thesis, nor does the thesis contain any material that infringes copyright.

Rowan William Smith August 2012

Authority of Access
This thesis may be made available for loan and limited copying in accordance with the Copyright Act 1968.

Rowan William Smith August 2012

Statement of Co-Authorship
A published refereed paper, based on some of the research presented in Chapter 3 and Chapter 4 of the thesis, is included as an appendix:

The following people and their institutions are listed as authors on the publication:

- Rowan Smith, School of Agricultural Science, UTAS (60%)
- Dr Mick Statham, Tasmanian Institute of Agriculture (10%)
- Prof. Tony Norton, School of Agricultural Science, UTAS (7.5%)
- Dr Richard Rawnsley, School of Agricultural Science, UTAS (7.5%)
- Mrs Helen Statham, Tasmanian Institute of Agriculture (5%)
- Dr Alistair Gracie, School of Agricultural Science, UTAS (5%)
- Dr Danny Donaghy, School of Agricultural Science, UTAS (5%)

Author details and their roles:

Rowan Smith undertook the research as part of his research program and candidature for a PhD at UTAS. He was the primary author of the paper with input from his co-authors. All co-authors contributed to the idea for the research and its formalisation and development. Dr Mick Statham, Dr Richard Rawnsley and Prof Tony Norton provided advice on the refinement and presentation of the paper. Dr Alistair Gracie provided assistance with the data analysis and presentation of results. The relative contributions of the co-authors to the paper are reflected by their listing.

We the undersigned agree with the above stated proportion of work undertaken by the primary and co-authors of the refereed published paper that is included in the appendix of this thesis:

Signed:

Professor Tony Norton
Primary Supervisor
(ex) School of Agricultural Science
University of Tasmania

Prof Holger Meinke
Head of School
School of Agricultural Science
University of Tasmania

Date: August 2012
Statement of ethical conduct

The research associated with this thesis abides by the international and Australian codes on human and animal experimentation, the guidelines by the Australian Government’s Office of Gene Technology Regulator and the rulings of the Safety, Ethics and Institutional Biosafety Committees of the University. Animal ethics approval number A0009820.

Rowan William Smith August 2012
Acknowledgements

This study benefited from valuable contributions of many people. Professor Tony Norton, Dr Richard Rawnsley, Dr Mick Statham, Dr Alistair Gracie, Helen Statham, Dr Danny Donaghy, and Dr Lucy Burkitt of the Tasmanian Institute of Agriculture (TIA) and University of Tasmania made significant contributions to the successful research proposal and project structure prior to the commencement of the study, and supervision of the doctoral study. Professor Tony Norton, Dr Richard Rawnsley, Dr Mick Statham, Dr Alistair Gracie, Helen Statham, and Dr Danny Donaghy also made outstanding contributions by providing supervision, support, knowledge, expertise and statistical advice throughout the study and provided constructive criticism in review of thesis drafts.

Amelia Fowles, Rebecca Fish and Bruce Dolbey (TIA) provided technical assistance in the field, often undertaking repetitive and lengthy tasks in unpleasant conditions. Bruce also kindly painted his impression of wildlife grazing at Fosterville on the cover page. Mark Branson and Nick Johannson (TIA) helped develop field techniques. Biometrician Dr Ross Corkrey (TIA) was central in developing the spatial distribution of wildlife grazing model from nocturnal surveys. Eric Hall (TIA) and Stuart Smith of the Department of Primary Industries, Parks, Water and Environment (DPIPWE) provided advice and expertise, while Linda Redman and Lyndal Oppermann (TIA) provided administrative support.

I am grateful to Simon Foster, his family and employees for generously providing trial sites on the Fosterville property and field assistance. He also provided enthusiasm, advice, and encouragement throughout the study. I have also received encouragement and support from many landowners and stakeholders while discussing my investigations and findings throughout Tasmania. In particular, those who attended the field day at Ross and stakeholder workshops on King Island, Flinders Island, and in Launceston at which I presented.
I would like to acknowledge the funding support provided through the ‘Alternatives to the Use of 1080 Program’ jointly funded by the Tasmanian and Australian Governments. In addition I received encouragement and guidance from John Dawson (DPIPWE), manager of the Alternatives to the Use of 1080 Program. I also thank Dr Greg Hocking, Kate Gill, Greg Blackwell and John North (DPIPWE) for their advice and support.

Finally, I thank my family for the support, patience and encouragement they have provided over the 20 years of my schooling. To my wife Lisa, who has displayed patience, commitment, courage and sacrifice to allow me to follow a dream, thank you.
Abstract

Management of Tasmania’s native and introduced wildlife on private land is a contentious issue for landowners, animal welfare groups and the Tasmanian State Government. In 2005 the use of the poison 1080 (sodium monofluoroacetate) to kill wildlife was banned from use on public lands and the State Government has planned to cease all use by 2015. Many farmers believe that the impact of grazing by native wildlife on pastures is significant and results in a considerable financial impost. However, only limited research has been undertaken to quantify this wildlife grazing impact. Grazing and browsing wildlife include Forester kangaroo (*Macropus giganteus tasmaniensis*), Bennett’s wallaby (*Macropus rufogriseus rufogriseus*), Tasmanian pademelon (*Thylogale billardierii*), brushtail possum (*Trichosurus vulpecula*) and fallow deer (*Dama dama*).

Results of a grazing impact study in the Midlands region of Tasmania found that in the year 2009 alone, average pasture loss for the area 0-800 m from the native vegetation edge was 1,730 kg dry matter (DM)/ha. These losses of pasture decreased with increasing distance from native vegetation and varied between 0-100% depending on season and distance from native vegetation. Periodic harvests of pasture plots and collection of wildlife faecal pellets indicated shifts in grazing behaviour with reference to seasonal pasture feed availability. Pasture losses and faecal collections were lowest during spring 2009, while pasture losses were greatest during winter 2008, matching highest and lowest pasture growth rates over the experimental period.

Production of perennial and annual grasses was greater in protected plots (areas protected by grazing exclusion cages) than exposed plots (not protected by cages), while the amount of subterranean clover (*Trifolium subterraneum*) increased in 2009 in exposed plots possibly due to reduced competition from grasses. Composition of annual grasses was greater in enclosed plots in close proximity to the native vegetation and the amount of bare ground was greater in exposed plots.
Exclusion of grazing for 2 years had no significant (P>0.05) effect on soil health parameters such as: ammonium nitrogen, nitrate nitrogen and organic carbon levels, pH, electrical conductivity, and root biomass. Microbial analysis also indicated no significant (P>0.05) effect on bacterial biomass, fungal biomass, total active microbial biomass, and fungal/bacterial ratio. These results indicated that either 2 years may not have been a long enough trial period to detect changes in soil health, or that the size of exclosure treatments may have been too small to prevent buffering influence from outside the exclosure.

A study investigating the influence of grazing damage during pasture establishment found that wildlife grazing had a significant (P<0.05) effect on production of all 4 pasture types sown. Pasture types containing phalaris (*Phalaris aquatica*) produced the highest DM and had greater ground cover than pasture types based mainly on ryegrass (*Lolium perenne*) and cocksfoot (*Dactylis glomerata*).

Pasture biomass losses under some conditions were found to be as high as 100% within 25m and 68% within 800 m of native vegetation. However, feed availability was found to be a large determinant in the distance and direction wildlife will travel to graze. Continued exposure to wildlife grazing resulted in a higher proportion of bare ground and reduced production of annual and perennial grasses. Control of wildlife grazing during pasture establishment may be necessary to reach optimum production and protect pasture species susceptible to grazing at the seedling stage. Continued grazing of pastures by wildlife is likely to amplify the effects of drought. The results of this thesis provide important information to land owners and that can better equip them to manage wildlife not only at a property scale, but also a catchment scale.
Table of Contents

Statements and Declarations ... I
Acknowledgements .. IV
Abstract ... VI
Table of Contents .. VIII
List of Tables .. XIII
List of Figures .. XI
List of boxes .. VII
List of species referred to in this thesis ... VIII
Wildlife .. VIII
Tree and shrubs .. VIII
Pasture plants ... IX
List of acronyms ... X
Chapter 1: Introduction .. 1
 1.1 Introduction .. 1
 1.2 Wildlife management in Tasmania’s agricultural landscapes 3
 1.3 The “Alternatives to the use of 1080” program 8
 1.4 Aims of the thesis ... 10
 1.5 Structure of the thesis .. 11
 1.6 Some definitions ... 12
Chapter 2: Introducing the Midlands of Tasmania case study 14
 2.1 Introduction .. 14
 2.2 Fosterville ... 15
 2.3 Climate ... 18
 2.4 Soils .. 19
 2.5 Vegetation and land use ... 19
 2.6 Improved pastures .. 20
 2.7 Semi-improved pastures ... 21
 2.8 Native pastures .. 21

VIII
Chapter 3: Effects of wildlife grazing on the production of an established perennial pasture

3.1 Introduction .. 34
3.2 Methods .. 36
 3.2.1 Experimental site ... 36
 3.2.2 Experimental design ... 37
 3.2.3 Pasture measurements ... 38
 3.2.4 Modelling of pasture growth rates using SGS pasture model 40
 3.2.5 Wildlife measurements ... 41
 3.2.6 Data analysis ... 43
3.3 Results ... 44
 3.3.1 Pasture production and loss ... 44
 3.3.2 Pasture growth rates ... 50
 3.3.3 Wildlife feeding activity .. 52
 3.3.4 Correlation between pasture loss and feeding activity 53
3.4 Discussion .. 55
3.5 Conclusions ... 63

Chapter 4: Effects of wildlife grazing on ground cover and plant species composition of an established perennial pasture .. 65

4.1 Introduction ... 65
4.2 Methods ... 68
 4.2.1 Initial pasture survey ... 69
 4.2.2 Assessment of plant species composition ... 69
 4.2.3 Data analysis ... 70
4.3 Results ... 71
4.3.1 Spatial variability of plant species composition ... 71
4.3.2 Seasonal variability of plant species composition .. 72
4.4 Discussion .. 78
4.5 Conclusions ... 85

Chapter 5: Influence of wildlife grazing on soil health in an established perennial pasture

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Introduction</td>
<td>87</td>
</tr>
<tr>
<td>5.2 Methods</td>
<td>89</td>
</tr>
<tr>
<td>5.2.1 Soil sample collection</td>
<td>90</td>
</tr>
<tr>
<td>5.2.2 Data analysis</td>
<td>94</td>
</tr>
<tr>
<td>5.3 Results</td>
<td>94</td>
</tr>
<tr>
<td>5.3.1 Soil nutrient status</td>
<td>94</td>
</tr>
<tr>
<td>5.3.2 Microbial analysis</td>
<td>97</td>
</tr>
<tr>
<td>5.3.3 Root biomass</td>
<td>97</td>
</tr>
<tr>
<td>5.4 Discussion</td>
<td>99</td>
</tr>
<tr>
<td>5.5 Conclusions</td>
<td>102</td>
</tr>
</tbody>
</table>

Chapter 6: Effects of grazing by wildlife on the establishment of improved pastures

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Introduction</td>
<td>104</td>
</tr>
<tr>
<td>6.2 Methods</td>
<td>107</td>
</tr>
<tr>
<td>6.2.1 Experimental sites</td>
<td>108</td>
</tr>
<tr>
<td>6.2.2 Experimental design</td>
<td>111</td>
</tr>
<tr>
<td>6.2.3 Pasture measurements</td>
<td>114</td>
</tr>
<tr>
<td>6.2.4 Data analysis</td>
<td>116</td>
</tr>
<tr>
<td>6.3 Results</td>
<td>117</td>
</tr>
<tr>
<td>6.3.1 Influence of wildlife grazing during establishment on pasture production</td>
<td>117</td>
</tr>
<tr>
<td>6.3.1.1 Fosterville</td>
<td>117</td>
</tr>
<tr>
<td>6.3.1.2 Mt. Pleasant</td>
<td>119</td>
</tr>
<tr>
<td>6.3.2 Influence of wildlife grazing during establishment on botanical composition</td>
<td>122</td>
</tr>
<tr>
<td>6.3.2.1 Fosterville</td>
<td>122</td>
</tr>
<tr>
<td>6.3.2.2 Mt. Pleasant</td>
<td>124</td>
</tr>
<tr>
<td>6.3.3 Evaluation of influences of exclusion cages on pasture production</td>
<td>126</td>
</tr>
</tbody>
</table>
Appendix 1 - Site plan of experiments undertaken in Chapters 3, 4 and 5................. 205
Appendix 2 - Site plan of experiments undertaken in Chapter 6.................................. 206
Appendix 3 - Site plan of experiments undertaken in Chapter 7................................. 207
Appendix 4 - Wildlife Research paper... 208