Thrips vectors and resistance to
Tomato spotted wilt virus (TSWV) in potato

by

Guy Westmore, BA, B AgrSci (Hons)

Submitted in fulfilment of the requirements for the Degree of

Doctor of Philosophy (Agricultural Science)

University of Tasmania, June 2012
This thesis contains no material which has been accepted for a degree or diploma by the University or any other institution, except by way of background information and duly acknowledged in the thesis, and to the best of the my knowledge and belief no material previously published or written by another person except where due acknowledgement is made in the text of the thesis, nor does the thesis contain any material that infringes copyright.

The research associated with this thesis abides by the international and Australian codes on human and animal experimentation, the guidelines by the Australian Government's Office of the Gene Technology Regulator and the rulings of the Safety, Ethics and Institutional Biosafety Committees of the University.

This thesis may be made available for loan and limited copying and communication in accordance with the Copyright Act 1968.

Signed:
Acknowledgements

The completion of this PhD would not have been possible without the support and assistance from a number of people. I would like to give my sincere thanks to all of my supervisors. Associate Professor Calum Wilson was the inspiration for this research and it has only been possible because of his many years of remarkable work in potato and potato diseases. His unwavering support and encouragement throughout this study is thoroughly appreciated. Thank you also to Associate Professor Geoff Allen who was very helpful, particularly in reviewing the final thesis, but more importantly by inspiring me to become an entomologist through his thrilling classes in my undergraduate days. I had never thought of becoming an entomologist until my first lecture when I was blown away by this amazing new world that Associate Professor Allen opened up for me. I would like to thank Fiona Poke for her friendship and help with all things DNA, and for reviewing the paper on genetic differentiation and vector competence.

This study followed and built upon the PhD study of Charles Jericho. I am very grateful to Charles for teaching me how to rear thrips in colonies, and for all of the knowledge he imparted on TSWV epidemiology in potato. I would like to thank Annabel Wilson for her assistance and training in maintaining potato cultivars in tissue cultures, and for all of her help in growing a seemingly endless number of plants in the glasshouse. I would like to thank Professor Laurence Mound for his insights into TSWV and onion thrips at my first attended scientific conference in 2005. Sonya Broughton was very helpful in providing laboratory space and colonies of *F. occidentalis* and *F. schultzei* for preference tests conducted in Western Australia. I thank Karen Barry for making available the spectroradiometer and providing training in its use. I would like to gratefully acknowledge the substantial assistance provided by Paul Frost and Calluna Longbottom, from Saffries Pty Ltd., for locating a site in South Australia, providing potato tubers, helping to plant out the trial, and taking leaf samples during the course of the trial. Thanks also to Iain Kirkwood, from the Tasmanian Institute of Agriculture, for providing the tubers for a number of the cultivars in the Tasmanian trials. Thanks to Grant Herron and Tanya James for supplying thrips populations from onion, and Calluna Longbottom for supplying thrips populations from potato in South Australia.

Extra special thanks go to Ross Corkrey for advice and assistance with statistical methods and tests. Without his help this study could not have been finished.

Finally, and most importantly of all, I am forever indebted to my parents, Carol and Rodney, and to my wife, Hanna, for their understanding, patience and encouragement when it was most needed.
Table of Contents

List of tables and figures .. 6

Preface ... 10

Abstract.. 11

Chapter 1 - General Introduction .. 12

Potato production in Australia ... 12

 History and economic importance ... 12
 Potato cultivars ... 13

Tomato spotted wilt virus .. 15

 History and economic importance ... 15
 TSWV in potato crops in Australia ... 17
 Taxonomy of TSWV .. 20
 Host range of TSWV ... 22
 Symptoms of TSWV .. 24
 TSWV symptoms in potato ... 25

Thrips vectors of Tomato spotted wilt virus ... 27

 Description and lifecycle ... 27
 Distribution ... 33
 Host range ... 35
 Dispersal .. 35
 Acquisition and transmission ... 36
 Vector competence .. 38

Thrips population dynamics .. 43

 Host preference and performance ... 44
 Plant morphology and growth habit .. 44
 Plant nutrition .. 45
 Antibiosis ... 45

Epidemiology of disease outbreaks .. 46

Management of TSWV and vector thrips .. 47

 Chemical control ... 47
Chapter 2 - Field trials assessing potato cultivars in relation to resistance to Tomato spotted wilt virus (TSWV) and thrips vectors across two different regions of south-east Australia.

Chapter 3 - Colour preferences of the Tomato spotted wilt virus (TSWV) thrips vectors: onion thrips, Thrips tabaci Lindeman, western flower thrips, Frankliniella occidentalis Pergande, and tomato thrips Frankliniella schultzei Trybom (Thysanoptera: Thripidae).

Chapter 4 - Host preference of onion thrips, Thrips tabaci Lindeman, western flower thrips, Frankliniella occidentalis Pergande, and tomato thrips Frankliniella schultzei Trybom and oviposition preference of T. tabaci (Thysanoptera: Thripidae).

Chapter 5 - Genetic and host-associated differentiation within Thrips tabaci Lindeman (Thysanoptera: Thripidae) and its links to TSWV-vector competence.

Chapter 6 - Summary and concluding remarks.
List of tables and figures

Table 1.1 Reports of TSWV in Australia... 19

Table 1.2 Important food and industrial plant species susceptible to TSWV.23

Figure 1.1 Ringspots and necrosis in TSWV-infected potato leaves.........................26

Figure 1.2 Severely stunted potato plant caused by TSWV-infection......................... 26

Figure 1.3 Discolouration and necrosis in TSWV-infected potato tubers cv. Atlantic....27

Figure 1.4 *Thrips tabaci* female.. 30

Figure 1.5 *Frankliniella occidentalis* female of common pest form........................31

Figure 1.6 *Frankliniella schultzei* female of dark form..32

Figure 1.7 Australian distribution maps to December, 2011 (Plant Health Australia, 2001) for: (a) *T. tabaci*, (b) *F. occidentalis* and (c) *F. schultzei*. .. 34

Table 2.1 Combined (averaged) results from selected cultivars in glasshouse and field trials conducted in 2001-2002 and 2002-2003 (from Jericho, 2005). 81

Figure 2.1 Potato cultivar trial layout conducted as a randomised complete block design with 16 plants for each cultivar in a 4 x 4 arrangement, in plots of 1.5 m x 8.5 m with four replications, at University of Tasmania Farm, Cambridge, Tasman, Dec 2005 - Mar 2006..84

Figure 2.2 Incidence of TSWV across potato cultivars in randomised block design with 16 plants for each cultivar in a 4 x 4 arrangement in 4 replications. TSWV-positive tomato plants were placed at the beginning of each cultivar block at the time of tuber planting. Leaves were removed from each plant just prior to senescence and tested for TSWV-infection. Data are expressed as mean ± SE .. 87

Table 2.2 Incidence of TSWV across potato cultivars in randomised block design with 16 plants for each of 6 cultivars in a 4 x 4 arrangement in 4 replications (384 plants). 87

Figure 2.3 Average *T. tabaci* per leaf across potato cultivars in 80 leaves sampled per cultivar assessed at fortnightly intervals (16 leaves sampled on each of 5 sampling dates). Data are expressed as mean ± SE.. 88

Figure 2.4 The average number of *T. tabaci* per leaf on each cultivar from 16 leaves sampled on each sampling date. Thrips count data are expressed as mean ± SE on the left vertical axis. Maximum daily temperatures on the day of sampling at the nearby (7.5 km) Hobart Airport (from the Australian Bureau of Meteorology) are shown for each sampling date on the right vertical axis.. 89

Table 2.3 Mixed procedure (SAS v9.2) showing tests of interaction of thrips counts (differences between cultivar tested by date) from the repeated measures analysis. 90

Figure 2.5 The average number of *T. tabaci* per leaf on each cultivar from 16 leaves sampled on each sampling date. Thrips count data are expressed as mean ± SE. Significant differences between cultivars within each sampling date are shown. 91

Figure 2.6 Scatterplot of the average number of thrips per leaf across all potato cultivars, from weekly-fortnightly assessments, beginning four weeks after emergence in mid-January to mid-March (five sampling dates) versus the percentage of TSWV-infection of each cultivar per replicate scored at the end of the trial.. 92

Table 2.4 Pearson’s correlation coefficients testing the correlation between numbers of thrips per leaf and incidence of TSWV foliar infection per replicate. 93
Figure 2.7 Unique collections of (a) *Thrips tabaci* and (b) *Thrips imaginis* by month (as a percentage of total) for five Australian States (New South Wales, Victoria, Tasmania, South Australia and Western Australia). The total number of unique collections for each State is indicated in parentheses in the figure legend.................................94

Figure 2.8 Potato cultivar trial layout conducted as a randomised complete block design with 8 plants for each of 9 cultivars in a 1 x 8 arrangement, in plots of 3 m x 3 m with four replications (288 plants), at University of Tasmania Farm, Cambridge, Tasmania, Dec 2005 - Mar 2006...96

Figure 2.9 Trial layout for potato cultivar trial conducted as a randomised complete block design with 8 plants for each of 8 cultivars in a 1 x 8 arrangement, in plots of 3 m x 3 m with four replications (256 plants), at Penola, South Australia Oct 2006 – Mar 2007............99

Table 2.5 Incidence of TSWV across potato cultivars in randomised block design with 8 plants for each of 8 cultivars in a 1 x 8 arrangement in 4 replications (256 plants). 100

Figure 2.10 The level of TSWV translocation from infected foliage to tubers across 8 potato cultivars in randomised block design with 8 plants for each of cultivar in 1 x 8 arrangements in 4 replications (256 plants). Tubers were tested from plants which had positive foliar TSWV-infections (see Table 2.5). Data are expressed as mean ± SE 101

Table 2.6 Percentage of TSWV-infected tubers and total tubers per plant for each potato cultivar in the South Australian trial. Only tubers from plants testing positive for TSWV foliar infection were tested... 102

Table 3.1 Highly preferred colours of *T. tabaci*, *F. occidentalis*, and *F. schultzei* demonstrated in choice tests or field observations...116

Figure 3.1 Coloured cards used in two-choice experiments...119

Figure 3.2 Spectral reflectance curves of nine potato cultivars showing reflectance at wavelengths 400-700 nm, with a 3.1-3.4 nm sampling interval. Two halogen light globes (150 w) were the only source of light used when taking measurements. Whole leaves, upper surface of the leaf facing upwards, were placed on black velvet with the spectroradiometer probe suspended approximately 15 cm above the leaf being measured. Three plants of each cultivar, and five leaves from each plant, were measured and adjusted by dividing by the reflectance of a calibrated white tile.123

Figure 3.3 Reflectance values of nine potato cultivars at wavelength 552 nm. Data are expressed as the mean of 12-15 potato leaves per cultivar ± SE ..124

Figure 3.4 Spectral reflectance curves showing reflectance at wavelengths 400-700 nm of seven colour cards (white, yellow, red, blue, light green, mid-green and dark green) and of potato cv. Atlantic. Data are expressed as mean ± SE ..125

Figure 3.5 Percentage of adult thrips choosing colour card in two choice tests (control mid-green versus blue, yellow, red, white and mid-green) for (a) *T. tabaci*, (b) *F. occidentalis* and (c) *F. schultzei*. For each choice combination 50 onion thrips were used and each thrips placed singly in the centre of the choice chamber, and given three minutes to reach either end. Data are expressed as mean ± SE. (*** = p < 0.001, **= p<0.01, ns = not significant in relation to mid-green choice) 127

Figure 3.6 Percentage of adult *T. tabaci* choosing colour card in two choice tests (dark green versus light green; mid-green versus dark green, light green and yellow; and light green versus yellow). The tests were conducted in a choice chamber as for Figure 3.5. The first mentioned colour of each pairing is that of the left-most column. Data are expressed as mean ± SE. ** = p < 0.001, ns = not significant ..128

Figure 3.7 Percentage of adult *T. tabaci* choosing colour card in two choice tests (light green colour card versus potato leaf cv. Shepody, Russet Burbank, Bismark and
Atlantic). The tests were conducted in a choice chamber as for Figure 3.5. Data are expressed as mean ± SE. *** = p < 0.001. .. 129

Figure 4.1 T. tabaci given two choice access between potato cv. Atlantic and eight other potato cultivars (Bismark, Russet Burbank, Shepody, Royal Blue, Tasman, Fergifry, 93-6-3 and Spunta). For each choice combination, 50 thrips were each placed singly in the centre of the choice chamber, and given three minutes to reach either end. Data are expressed as mean ± SE. Significant differences are shown relative to cv. Atlantic 153

Figure 4.2 Two choice tests between potato cv. Atlantic and six other hosts (tomato, Canola, Datura, tobacco, yellow Calendula flowers, and onion leaves) for (a) T. tabaci, (b) F. occidentalis and (c) F. schultzei For each choice combination, 25 single thrips were placed in the centre of the choice chamber, and given three minutes to reach either end. Data are expressed as mean ± SE. Significant differences are shown relative to potato cv. Atlantic. .. 155

Figure 4.3 No choice oviposition (hatched first instar larvae and developing eggs per leaf disk) of T. tabaci on nine potato cultivars. In each of 30 replicates five adult (female) T. tabaci were placed on each leaf disk of potato cultivars in Petri dishes (9cm diameter) on a sheet of moistened paper towel, and sealed with parafilm. Adults were removed after 24 h and leaf disks incubated for 5 days at room temperature, at which time the number of emerged juveniles was scored. Data are expressed as mean ± SE. ………. 156

Figure 4.4 T. tabaci given two choice access between potato cv. Bismark and five other cultivars. In each of 15 replicates, ten adult (female) thrips were placed in the centre of a Petri dish, between a leaf disk of potato cv. Bismark paired with each of five other cultivars. Adults were removed after 24 h and leaf disks incubated for 5 days at room temperature, at which time the number of juveniles on each leaf disk was scored. Data are expressed as mean ± SE. * = p < 0.05. ns = not significant relative to cv. Bismark. 157

Figure 5.1 Map showing collection sites of Australian populations of T. tabaci from onion, potato and additional hosts. Populations were collected from onion at Mypolonga, South Australia (SA M), Whitton, New South Wales (NSW-C), Coleambally, New South Wales (NSW W) and Boat Harbour, Tasmania (TAS-BH). Four populations (SA-P, SA-P1, SA-P2, SA-ATL) were collected from potato at the same location in Penola, South Australia. Three populations (Tas-FT, Tas-P, Tas-P1) were collected from potato at Cambridge, Tasmania. One population (Tas-Capeweed) was collected from capeweed at Cambridge, Tasmania. One population (Tas-Lucerne) was collected from lucerne at Richmond, Tasmania. Three populations were collected from Hobart, Tasmania – one from Chrysanthemum sp. (Tas-Chr), one from Impatiens sp. (Tas-Impatiens) and one from Solanum nigrum (Tas-Nightshade).. 179

Table 5.1 Transmission experiments were conducted on eight populations of T. tabaci using six acquisition and transmission host combinations across ten experiments. 1st instar larvae less than 12 h old, from each population, were taken from common bean pods and placed on detached leaves of acquisition hosts for 24 h, then reared to adults on common bean pods, and transferred to leaf disks of a transmission host for 72 h, with one thrips per leaf disk. .. 182

Table 5.2 TSWV-transmission experiments were conducted on five populations of T. tabaci using seven acquisition and transmission host combinations. Adults from each population were placed on acquisition hosts, and 100 2nd instar larvae were later removed, reared to adults on common bean pods, and then transferred to a transmission host. The transmission host in each experiment consisted of a single plant upon which more than 50 adult thrips were placed. .. 183

Table 5.3 Accession numbers for Australian populations of T. tabaci and F. occidentalis used in this study. .. 185
Table 5.4 TSWV vector competence of Australian *T. tabaci* populations - percentage transmission in different acquisition and transmission host combinations using individual thrips. Three populations collected from potato, from two Australian states (Tasmania and South Australia), four populations collected from onion across three Australian states (Tasmania, South Australia, and NSW) and one from *Chrysanthemum* collected from Tasmania were tested. SA = South Australia; TAS = Tasmania; NSW = New South Wales; Tom = tomato; Tob = tobacco; Night = blackberry nightshade; Dat = *Datura*; Pot = potato cv. Atlantic.

Table 5.5 TSWV transmission by *T. tabaci* in different acquisition and transmission host combinations using multiple thrips (more than 50 individuals on each transmission host) from 5 different thrips populations. (+ = transmission, - = no transmission, n/a = not tested, SA = South Australia, TAS = Tasmania, NSW = New South Wales).

Figure 5.2 Phylogenetic analysis of all *T. tabaci* populations collected from Australia (Genbank: JQ074095-JQ074109), selected sequences of *T. tabaci* from Europe (Genbank: AY196831, AY196838, AY196840, AY196841, AY196843, AY196844, AY196845, AY196847, AY196848), *T. palmi* (GenBank AB277231), *F. occidentalis* from the United States (GenBank EF555889) and *F. occidentalis* from Tasmania (Genbank: JQ082479). Clades are marked as per Brunner et al. (2004). Greyed out populations were tested for vector competence. * = known TSWV-vector competent populations.

Table 5.6 Variable positions in the 433 bp segment of the COI gene of 15 populations of *T. tabaci* from Australia. The reference sequence is Tas P (*T. tabaci* collected from potato in Tasmania). All other populations collected from potato (Tas P1, Tas FT, SA P, SA P1, SA P2, SA ATL) had identical sequences to Tas P and are not shown. Dots indicate nucleotides that are identical throughout the compared sequences.

Table 6.1 Potato cultivar comparisons for TSWV foliar and tuber infection, thrips numbers on foliage, green intensity of foliage, cultivar preferences (choice) and oviposition preferences in choice and no-choice tests (1 = highest value for each category; 3 = lowest value; same number signifies no difference; ns = no significant difference between all cultivars).

Table 6.2 Colour preferences of *T. tabaci*, *T. shultzei* and *F. occidentalis* in choice tests paired with mid-green (1 = most preferred colour for each species; 3 = least preferred colour; same number signifies no difference).

Table 6.3 Plant host preferences of *T. tabaci*, *T. shultzei* and *F. occidentalis* in choice tests paired with potato cv. Atlantic (1 = most preferred plant host for each species; 2 = least preferred plant host; same number signifies no difference; ns = no significant difference between all cultivars).

Table 6.4 Mean transmission rate of TSWV by different populations of *T. tabaci*, the source host and location of collected populations, and the phylogenetic subgroup in which each population clustered.
Preface

This study was formulated to examine the attributes of onion thrips (*Thrips tabaci* Lindeman) in relation to its vectoring role of *Tomato spotted wilt virus* (TSWV) in commercial and seed potato crops in Australia. Outbreaks of TSWV in potato have been sporadic, often not occurring for several years, but on occasion devastating, affecting up to one-third of some crops, and causing millions of dollars in industry losses. The accumulation of knowledge of TSWV disease epidemiology in potato has been limited due to its sporadic nature and low incidence outside Australia. Work conducted by Charles Jericho (2005) greatly increased this knowledge, but left many questions unanswered, not least of which is the ongoing confusion over the role of *T. tabaci* as a vector of TSWV in Australia.

This thesis consists of a general introduction followed by four research chapters and concludes with a thesis summary and general discussion. Each of the research chapters has been prepared as an independent, publishable manuscript, except that here, figures and tables have been numbered to fit with the thesis format. For this reason, on occasion, there is some repetition between chapters. The chapters are as follows:

Chapter 1 provides a general introduction and literature review

Chapter 2 examines three field trials undertaken in Tasmania and South Australia looking at differences in TSWV foliar and tuber infection levels, and *T. tabaci* numbers across a number of potato cultivars.

Chapter 3 examines the colour preferences of *T. tabaci*, *F. schultzei* and *F. occidentalis* for green, yellow, blue, red and white, as well as the preference of *T. tabaci* for different intensities of green. This chapter also contains a spectral analysis of potato cultivars.

Chapter 4 examines the host preferences of *T. tabaci*, *F. schultzei* and *F. occidentalis* for potato compared to a number of other plant hosts, and also the preferences of *T. tabaci* for potato at the cultivar level. This chapter also examines the oviposition preferences of *T. tabaci* for potato cultivars in choice and no-choice tests.

Chapter 5 examines the vector competence and transmission efficiency of several populations of *T. tabaci* in a number of acquisition-transmission host combinations, and relates this to the source hosts from which these populations were collected, and the relationship of these populations in a phylogenetic analysis.

Chapter 6 consists of a thesis summary and concluding remarks, with recommendations for further research and for industry.
Abstract

This study was formulated to examine the efficiency of *Tomato spotted wilt virus* (TSWV) transmission by onion thrips (*Thrips tabaci* Lindeman) and factors associated with host resistance in potato; in particular to investigate the suggestion that potato cv. Bismark has a high level of resistance to thrips, and to examine why onion thrips have failed to transmit TSWV in laboratory experiments in previous studies. Three field trials were conducted in Tasmania and South Australia to evaluate differences in potato cultivar resistance to thrips and TSWV (Chapter 2). TSWV-infection levels were moderate in two trials, with TSWV-incidence varying from 9-26 percent in Tasmania and 3-22 percent in South Australia, but only 0-6 percent in the second Tasmanian trial. Thrips counts showed the highest numbers of *T. tabaci* on Bismark and lowest thrips numbers were found on Shepody. There were no significant differences in TSWV foliar or tuber infections between cultivars, and no correlation between thrips numbers and TSWV incidence.

A population of *T. tabaci* was subjected to choice experiments to test for colour preference (Chapter 3), and host preference and oviposition choice (Chapter 4), using a number of commercial potato cultivars and coloured cards. Populations of western flower thrips (*Frankliniella occidentalis* Pergande) and tomato thrips (*Frankliniella schultzei* Trybom) were also tested for colour and host preference alongside onion thrips in separate experiments. Colour preference tests showed strong colour preferences amongst all three thrips species tested. Western flower thrips and tomato thrips strongly preferred green to red, blue and white; but preferred yellow to green. Onion thrips preferred green and yellow equally and over the other three colours. Onion thrips showed a strong preference for light-green over darker shades of green. Host preference tests showed differences in potato cultivar preference by onion thrips, with higher attraction to cultivars with lighter green foliage: Shepody and Russet Burbank. Oviposition choice tests showed almost the opposite, with higher numbers of hatched juvenile thrips on darker green potato cultivars: Atlantic, Bismark, Royal Blue and Tasman.

Several female-only, parthenogenetic populations of *T. tabaci* were collected from Tasmania, New South Wales and South Australia from potato, onion and *Chrysanthemum*. These populations were tested for their ability to transmit TSWV to potato and other hosts, and subjected to a phylogenetic analysis following DNA extraction and PCR amplification of mitochondrial gene cytochrome c oxidase subunit 1 (COI) (Chapter 5). Vector competence was associated with the host from which the populations were collected, with three populations collected from potato transmitting TSWV, but three populations collected from onion failing to transmit the virus. This ability to transmit TSWV was also associated with differentiation in COI, with vector competent and non-competent populations separating into subgroups within the ‘L2’ European clade of Brunner *et al.* (2004).

This is the first study to link genetic differentiation of *T. tabaci* to both source host and vector competence, and provides a credible explanation for why many studies have failed to achieve any transmission of TSWV by this species. Strong colour preferences and some host preferences were also demonstrated, however field experiments suggest that potato cultivar resistance to thrips is unlikely to provide a reliable method for reducing TSWV infection levels in commercial potato crops.