Marine Vessel Wave Wake:
Focus on Vessel Operations within Sheltered Waterways

Gregor J Macfarlane, B.Eng. (Hons), M.Phil.

Submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy

Australian Maritime College, University of Tasmania

5 June 2012
Declarations

Declaration of Originality

This thesis contains no material which has been accepted for a degree or diploma by the University or any other institution, except by way of background information and duly acknowledged in the thesis, and to the best of my knowledge and belief no material previously published or written by another person except where due acknowledgement is made in the text of the thesis, nor does the thesis contain any material that infringes copyright.

Authority of Access

This thesis may be made available for loan and limited copying and communication in accordance with the Copyright Act 1968.

Gregor J Macfarlane
5 June 2012
Abstract

This thesis reports on an investigation into the characteristics of the wave wake generated by vessels that typically operate within sheltered waterways. It is well known that these waves can result in issues for other users of the waterway and the surrounding environment. These issues include erosion of the surrounding banks, damage or nuisance to moored vessels and other maritime structures and endanger people working or enjoying activities in small craft or close to the shore.

A review of the wave patterns generated at sub-critical, trans-critical and super-critical depth Froude numbers has been conducted, with an emphasis on those craft that commonly utilise sheltered waterways, namely small commercial vessels and recreational craft. Particular attention was given to planing and wakeboarding vessels, given the large and increasing number of these craft. One of the major issues often confronted is that of bank erosion and a study was conducted to determine which measures of erosion potential are the most descriptive in these circumstances.

Over recent decades it has been common to quantify a vessel’s wave wake using the characteristics of just a single wave within the entire wave train, usually the highest. However, in this study it has been shown that this is generally inadequate when considering craft operating at trans-critical or super-critical speeds. Three significant waves of interest were described and quantified in this study.

A comprehensive set of model scale experiments was conducted to investigate the effect that water depth, hull form and vessel speed has on the waves generated by nineteen different hull forms, including a mixture of typical monohulls and catamarans. Four primary measures were quantified for each of the three key waves, including wave height, wave period, decay rate and wave angle.

The results from the experiments were used to develop an empirical tool to provide wave wake predictions and to investigate the effect that water depth, hull form and vessel speed has on each of the four primary wave measures. Predictions from the tool were validated against measured data from several independent full scale trials.

A wave wake regulatory criterion, suitable for the operation of typical recreational craft and small commercial vessels operating in sheltered waterways, was proposed and incorporated within the prediction tool.
Acknowledgements

Many people provided assistance during the course of this study, but special thanks are due to:

Prof. Neil Bose, supervisor of both my PhD research and my ‘day job’, firstly for his encouragement and support that has allowed me to undertake this project and for his valuable guidance along the way.

Dr. Jonathan Duffy, not just for his valuable experience and contribution as co-supervisor, but also for the splendid job he did while taking over my day job for over 12 months to allow me the opportunity to undertake this rewarding challenge.

My colleagues within the team at the AMC Towing Tank and Model Test Basin, especially Tim Lilienthal, Kirk Meyer, Drew Honeychurch, Liam Honeychurch and Shaun Denehy, for their assistance while my attention regularly strayed between my day job and PhD.

My colleagues and fellow post-graduates within the AMC National Centre for Maritime Engineering and Hydrodynamics. A special thank you goes to Prof. Martin Renilson for over 20 years of encouragement and advice.

Friend and fellow PhD candidate, Dr.* Alex Robbins, for countless discussions related to boats and wave wake, most of which ended off-topic and in fits of laughter. (*to be confirmed in the near future!).

Various key participants from industry for their valued input, especially naval architect Greg Cox, geomorphologist Jason Bradbury and cruise vessel owner/operators Troy and Guy Grining.

My wife, Leanne, and children, Lachlan, Callum, Bethany and Ainsley, for their support, encouragement and understanding over the past few years while I have tried (and often failed) to find the right balance between work, study and family. Special thanks also to my mother, father and two sisters – for similar reasons, but over a much longer timeframe.
Table of Contents

Abstract .. i
Acknowledgements .. ii
List of Figures ... vii
List of Tables .. xi
Nomenclature ... xii

1. Introduction ... 1
 1.1 Definition of the Problem ... 1
 1.2 Hypothesis and Research Questions .. 6
 1.3 Overview of Thesis Structure ... 6

2. Vessel Generated Waves ... 9
 2.1 Vessel Wave Patterns ... 9
 2.1.1 Introduction .. 9
 2.1.2 Sub-Critical Speeds (Fr_h < 0.75) ... 10
 2.1.3 Trans-critical Speeds (0.75 < Fr_h < 1.0) ... 12
 2.1.4 Critical Speed (Fr_h = 1.0) ... 12
 2.1.5 Super-Critical Speeds (Fr_h > 1.0) ... 13
 2.1.6 Wave Height Constant .. 14
 2.1.7 Wave Angles ... 16
 2.1.8 The Effect of Manoeuvring (Turning) .. 21
 2.1.9 The Effect of Propulsors .. 22
 2.2 Propagating Wave Phenomena .. 24
 2.2.1 Dispersion ... 24
 2.2.2 Attenuation ... 26
 2.2.3 Wave Energy and Power .. 29
 2.3 Vessel Speed Regimes .. 31
 2.3.1 Displacement Speed .. 32
 2.3.2 Semi-displacement Speed .. 32
 2.3.3 High Speed (Planing) ... 33
 2.4 High Speed Planing Vessels .. 34
 2.4.1 Introduction .. 34
2.4.2 Hull Resistance Components .. 35
2.4.3 Planing Action ... 36
2.4.4 Planing Forms and High-Speed Vessel Wave Generation 39
2.4.5 Wake Boarding .. 41

2.5 Sheltered Waterways ... 46
2.5.1 Regions ... 46
2.5.2 Types of Bank .. 47
2.5.3 Restricted Waterway Effects .. 48
2.5.4 Wind Waves .. 50

3. Quantifying Vessel Wave Wake and Bank Erosion 53
3.1 Introduction .. 53
3.2 Relevant Wave Wake Characteristics ... 53
3.3 Wave Measures used in This Study ... 58
3.4 Quantifying Bank Erosion due to Vessel Wave Wake 63
3.4.1 Background .. 63
3.4.2 Bank Erosion Studies in Sheltered Waterways 63
3.4.3 Bank Erosion Studies on the Gordon River, Tasmania 66

4. Wave Wake Prediction Techniques ... 75
4.1 Introduction .. 75
4.2 Literature Review .. 76
4.2.1 Prediction of Wave Wake - Experimental Measurement 77
4.2.2 Prediction of Wave Wake - Computational Methods 80
4.3 Concluding Remarks on Prediction Techniques 85

5. Wave Wake Experiments ... 86
5.1 Introduction .. 86
5.2 Test Variables .. 87
5.2.1 Ship Models .. 87
5.2.2 Water Depths ... 88
5.2.3 Vessel Speeds ... 90
5.3 Experimental Equipment and Procedures 91
5.3.1 Equipment .. 91
5.3.2 Instrumentation .. 93
5.3.3 Test Procedure and Data Acquisition 94
5.4 Analysis Process .. 94
5.4.1 Analysis of the Time Series Data ... 94
5.4.2 Analysis of Data for Each Ship Model .. 102

5.5 Effect of Vessel Speed and Water Depth .. 102
 5.5.1 Wave Height Constant, γ ... 103
 5.5.2 Normalised Wave Period, T’ ... 112
 5.5.3 Wave Decay Rate, n .. 117
 5.5.4 Wave Angle, θ ... 122

6. Wave Wake Prediction Tool .. 127
 6.1 Introduction .. 127
 6.2 Development of the Prediction Tool ... 129
 6.2.1 Method of Operation .. 129
 6.2.2 Limitations and Assumptions ... 132
 6.2.3 Verification ... 136
 6.3 Effect of Hull Form .. 137
 6.4 Application of the Wave Wake Predictor ... 144
 6.5 Validation of the Wave Wake Predictor .. 150
 6.5.1 Introduction .. 150
 6.5.2 Conduct of Full Scale Wave Wake Trials ... 150
 6.5.3 Results: 24 m Catamaran ... 156
 6.5.4 Results: 29 m Catamaran ... 162
 6.5.5 Results: Ski Boats ... 166
 6.5.6 Results: Additional Vessels ... 170
 6.5.7 Concluding Remarks on Validation ... 172

7. Wave Wake Regulatory Criteria .. 174
 7.1 Introduction .. 174
 7.1.1 The Need for Wave Wake Criteria ... 174
 7.1.2 Criteria Requirements ... 176
 7.1.3 Review of Recent Developments .. 177
 7.1.4 Wave Energy or Power? .. 181
 7.2 Proposed Regulatory Criteria .. 182
 7.2.1 The Wave Wake Rule .. 182
 7.2.2 Benchmark Values of Wave Height and Period 183
 7.3 Use of the Wave Wake Predictor with the Wave Wake Rule 185

8. Conclusions, Recommendations and Further Work .. 191
 8.1 Conclusions and Recommendations ... 191
 8.2 Further Work ... 196
References ... 198
Appendix A .. 216
 Ship Model Body Plans .. 216
Appendix B .. 221
 Typical Vessel Operations in Australian Sheltered Waterways 221
Appendix C .. 223
 Use of Spectral Analysis ... 223
Appendix D .. 226
 Uncertainty Analysis ... 226