Enhancing athletic performance through high-intensity interval training and sodium bicarbonate supplementation

Matthew W. Driller
B.Sp.Ex.Sci (Hons)

A thesis submitted in fulfilment of the requirements for the degree of
Doctor of Philosophy

School of Human Life Sciences, University of Tasmania, Australia.

February 2012

Primary Supervisor: Dr. James Fell
Statement of Originality and Ethical Conduct

I, Matthew Driller certify that this work is entirely my own effort except where otherwise acknowledged. I also certify that, to the best of my knowledge and belief, the work is original and has not been previously submitted for any other award, nor does the thesis contain any material that infringes copyright. This thesis may be made available for loan and limited copying in accordance with the Copyright Act 1968.

The research associated with this thesis abides by the international and Australian codes on human and animal experimentation, the guidelines by the Australian Government's Office of the Gene Technology Regulator and the rulings of the Safety, Ethics and Institutional Biosafety Committees of the University.

Matthew Driller

Date: 27/02/2012

SUPERVISOR ENDORSEMENT

Date: 27/02/2012
Abstract

Introduction: Metabolic acidosis is a by-product of the energy production process required during high-intensity exercise, and it is thought to play a part in influencing muscle function and fatigue. Consequently, the efficacy of an athlete’s intra- and extra-cellular buffering systems may influence their performance during an exercise task. These buffering systems can be enhanced through exercise training and nutritional supplementation. Therefore, the purpose of this series of studies was to investigate combined training and sodium bicarbonate (NaHCO₃) supplementation techniques for enhancing performance in well-trained athletes.

Study 1. The aim of this study was to evaluate high-intensity interval training (HIT) for improving performance in already well-trained athletes. To achieve this we compared traditional rowing training (CT) to HIT in state-representative rowers. Following baseline testing (2000 m rowing test, incremental rowing test) 10 rowers were randomly allocated to HIT or CT, which they performed seven times over a 4-week period, after post-treatment testing the rowers were allocated to the alternative training method, completing a cross-over design. The HIT produced significantly greater improvements in 2000 m time, 2000 m power and relative VO₂ peak when compared to CT (P < 0.05). It was concluded that four weeks of HIT improves 2000 m time-trial performance and relative VO₂ peak in competitive rowers, more than CT.

Study 2. After establishing that HIT was effective in improving rowing performance the next step was to investigate if the combination of HIT and NaHCO₃ supplementation could further enhance performance. However, the research literature was still equivocal as to the most effective method of NaHCO₃ supplementation. Consequently, the aim of Study 2 was
to compare acute NaHCO₃ loading with serial NaHCO₃ loading (split doses over three days) in well-trained cyclists to establish which method was best for producing performance improvements and enhanced acid-base balance with minimal side effects. Eight male cyclists completed three tests in a double blind, randomised design over a three week timeframe: acute NaHCO₃ loading (AL), serial NaHCO₃ loading (SL) and a placebo loading condition (P). Following each loading protocol, cyclists completed a 4-min performance test on a cycling ergometer. Both the AL and SL trials produced a significantly higher average power in the 4-min test when compared to the P trial ($P < 0.05$), with no significant difference between AL and SL trials ($P = 0.29$). The improvements in performance associated with the SL trial were despite any changes to the measure blood-gas variables (pH and HCO$_3^-$). It was concluded that SL may provide a convenient and practical alternative approach for athletes preparing for competition; however, AL was the most effective for altering acid-base balance as well as improving performance with minimal negative side-effects, and was deemed the most appropriate method to use when combing HIT and NaHCO₃.

Study 3. With appropriate protocols for both HIT and NaHCO₃ loading in well-trained athletes confirmed, the aim of Study 3 was to combine these two strategies and investigate whether there was any additive benefit when used in a chronic training setting. Subjects were 12 elite rowers preparing for international competition. Following baseline testing, rowers were allocated to either NaHCO₃ (ALK) or a placebo (PLA) group (sodium chloride matched for equimolar sodium content). Both groups performed 8 HIT sessions over a 4-week period. Prior to each HIT session, subjects were required to ingest NaHCO₃ or a placebo substance. The 2000 m time-trial performance improved after 4 weeks of HIT; however, there were no statistically significant performance improvements ($P > 0.05$)
attributable to the NaHCO₃ supplementation during HIT training of fixed volume and intensity.

Study 4. Due to the results from Study 2 and 3, along with some inconsistencies in the literature regarding the influence of NaHCO₃ loading on athletic performance, it was hypothesised that a possible reason for lack of performance improvements after NaHCO₃ supplementation was the use of sodium chloride (NaCl) as a placebo. The sodium content has been proposed to provide some performance benefits, possibly through blood volume shifts, obscuring some of the benefits associated with NaHCO₃ supplementation, limiting its use as a valid placebo substance. Therefore the aim of Study 4 was to compare NaHCO₃ and NaCl to a physically inert substance by evaluating the haematocrit changes and their influence on high-intensity cycling performance. Subjects undertook three tests in a random, double-blind design over a one week timeframe: NaHCO₃ loading (SB), NaCl loading (SC) and dextrose loading (D). Following each loading protocol, subjects completed a 2-min performance test on a cycling ergometer. The SB trial produced a significantly higher ($P < 0.01$) mean power (W) in the 2-min test when compared to the SC and D trial with no significant difference between SC and D trials ($P > 0.05$). It was concluded that the HCO₃⁻ not the Na⁺ was primarily responsible for providing any ergogenic benefit during high-intensity exercise performance.

Conclusions: The findings from these studies suggest that independently, both HIT and NaHCO₃ supplementation can improve high-intensity exercise performance in well-trained athletes. However, this thesis provides the first study to investigate the combination of these two techniques in highly-trained athletes and provides evidence that such an approach does not lead to additional performance gains in this population; however, further research is warranted. The findings from the final study of the thesis suggest that it is the HCO₃⁻ content in NaHCO₃ which is likely to facilitate performance benefits more so than
the Na⁺ content. The findings of the studies included in this thesis are applicable to high-intensity exercise performance in the context of high-level athletic competition. The research adds to the knowledge base regarding practical information for athletes and coaches in terms of novel NaHCO₃ loading and interval training protocols while providing likely performance outcomes.
Publications Arising From This Thesis

The publishers of the papers included in this thesis hold the copyright for that content, and access to the material should be sought from the respective journals. The remaining non published content of the thesis may be made available for loan and limited copying and communication in accordance with the Copyright Act 1968.

Peer Reviewed Conference Proceedings

Awards/Grants

Statement of Candidate Contribution

This thesis comprises four research investigations which have been completed almost entirely by Matthew Driller (the candidate). The candidate designed the studies, coordinated and supervised all data collection, analysed the data, and prepared all manuscripts. The contributions of all parties to each of the four studies are detailed below.

Study one: The effects of high-intensity interval training in well-trained rowers

- Mr Matthew Driller: lead role in study design, data collection, statistical analysis and first author on manuscript (70%)
- Dr James Fell: assisted with study design, data collection and manuscript revision (20%)
- Dr Andrew Williams: assisted with study design, data collection, statistical analysis and manuscript revision (5%)
- Mr John Gregory: assisted with data collection (2.5%)
- Dr Cecilia Shing: assisted with data collection and manuscript revision (2.5%)

Study two: The effects of serial and acute NaHCO₃ loading in well-trained cyclists

- Mr Matthew Driller: lead role in study design, data collection, statistical analysis and first author on manuscript (80%)
- Dr James Fell: assisted with study design and manuscript revision (10%)
- Mr John Gregory: assisted with data collection (5%)
- Dr Andrew Williams: assisted with statistical analysis and manuscript revision (5%)
Study three: The effects of chronic sodium bicarbonate loading and interval training in highly-trained rowers

- Mr Matthew Driller: lead role in study design, data collection, statistical analysis and first author on manuscript (80%)
- Dr James Fell: assisted with study design, statistical analysis and manuscript revision (10%)
- Mr John Gregory: assisted with data collection (5%)
- Dr Andrew Williams: assisted with statistical analysis (5%)

Study four: The effects of NaHCO₃ and NaCl loading on performance

- Mr Matthew Driller: lead role in study design, data collection, statistical analysis and first author on manuscript (65%)
- Dr James Fell: assisted with study design, statistical analysis and manuscript revision (10%)
- Mr Sam Howe: assisted with data collection and manuscript revision (10%)
- Mr Phillip Bellinger: assisted with data collection and manuscript revision (10%)
- Dr Andrew Williams: assisted with statistical analysis and manuscript revision (5%)
There was one further study that was directly related to this thesis and it appears in the appendices (Appendix I). The study was derived from blood collected during the conduct of study one. Therefore, the candidate completed all data collection but did not perform the first draft of the final manuscript and as such has not been included as part of the body of the thesis. The contribution to the study is listed below:

Study five: The effects of high-intensity interval training on plasma adiponectin in well-trained rowers

- Dr Cecilia Shing: data collection, statistical analysis and first author (40%)
- Mr Matthew Driller: assisted with data collection and manuscript revision (30%)
- Dr James Fell: assisted with data collection and manuscript revision (15%)
- Ms Jess Webb: assisted with data collection, analysis of blood, and manuscript revision (10%)
- Dr Andrew Williams: assisted with data collection and manuscript revision (5%)

We the undersigned agree with the above stated “proportion of work undertaken” for each of the above published (or submitted) peer-reviewed manuscripts contributing to this thesis:

Signed: _______________
Candidate

Signed: __________________________
Dr. James Fell
Supervisor
School Of Human Life Sciences
University of Tasmania

Signed: ___________________
Professor Madeleine Ball
Head of School
School of Human Life Sciences
University of Tasmania

Date: 27/02/2012
Acknowledgements

Firstly, I would like to thank all of the athletes (and their coaches) who have taken part in all of my studies, without you, this would not have been possible. It was a pleasure working with so many driven individuals who were always willing to give 100% in each test they completed. I have gained a new level of respect for the level of dedication and sacrifice involved in being a top-class athlete. Good luck to all the subjects from my studies as you strive to reach your goals, especially those who are competing in the London Olympics this year. I feel very lucky to work in an area that I am passionate about and look forward to going to work every day. With this, I would like to acknowledge my current employer, the Australian Institute of Sport (AIS). It is an honour to work in such an elite environment and be surrounded by so many experts in their field. Thank you for allowing me to continue work on my PhD while being employed full-time.

To my primary supervisor, James – what a ride! Thank you for taking a risk and giving the scholarship position to a Kiwi. Thank you for your brilliant supervision and for always making time for me no matter how busy you are. I have learnt so much over the last 5 years and I am lucky to have had a supervisor with so many different areas of expertise. I really appreciate the opportunities and experience that you offered me in Tassie, and for making the transition over the ditch an easy one. Thank you also for your patience, perseverance, humour and understanding throughout my PhD. I look forward to our collaborations in the future!

To my other University supervisors, Andrew Williams and Cecilia Shing - thank you for your invaluable input into my PhD candidature, and the great amounts of time you have
made available to read and discuss my work. Ceils – thanks for giving me the opportunity to be involved with your research and teaching at uni and for the insight you provided to my studies. Andy – thanks for sharing your expertise in statistical analysis and for the revisions of my manuscripts and thesis.

To my practical supervisor, John Gregory, and all the staff at the Tasmanian Institute of Sport – I am very appreciative of the experiences in applied sport science I have gained while completing my PhD with you. It was fantastic being able to complete my PhD while, at the same time, gaining experience working with some of Australia’s top athletes. Thank you, John, for your support in helping me find subjects for my studies and for teaching me all the practical skills required for testing athletes over a range of sports. Your passion for helping athletes improve is infectious.

I would like to acknowledge Dr Johann Edge. Johann’s work provided the inspiration for some of the studies in this thesis. Johann was kind enough to provide me with advice when I was designing some of my studies. Unfortunately, in March 2010, Johann passed away in a cycling accident. I feel honoured to have known him and privileged that I could carry on some of the work he started.

To my parents, thank you for supporting me in pursuing my career in sports physiology, even if you didn’t know there was such a thing and would prefer I got a “real job”. Thank you also for instilling in me the importance of hard work.
Lastly, I would like to thank my wife, Kirsty. It’s been a trying journey over the last 5 years - but we made it! Thank you for encouraging me to finish this thing and for letting me follow my dreams. Hopefully, we can now spend some more weekends together!
Table of Contents

Statement of Originality and Ethical Conduct ... ii
Abstract .. iii
Publications Arising From This Thesis .. vii
Peer Reviewed Conference Proceedings .. viii
Awards/Grants .. ix
Statement of Candidate Contribution ... x
Acknowledgements .. xiii
List of Tables ... 4
List of Figures .. 5
Abbreviations .. 6
Overview ... 8
Thesis Organisation .. 11
Chapter One: .. 15
Introduction ... 15
 General Introduction ... 16
Importance of muscle buffer capacity ... 19
Muscle buffer capacity in response to exercise ... 22
Extracellular buffering ... 23
Summary .. 23
Chapter Two: .. 25
Literature Review: .. 25
PART A - The effect of high-intensity interval training on physiology and performance.. 25
High-intensity interval training (HIT) .. 26
Physiological rationale for HIT .. 27
Peripheral adaptations to HIT .. 27
HIT induced changes to muscle buffer capacity ... 27
Other peripheral adaptations to HIT .. 31
Central adaptations to HIT ... 33
The influence of HIT in trained and untrained populations 36
Untrained ... 36
Trained .. 37
Summary .. 40
PART B - The effect of NaHCO₃ supplementation on physiology and performance 41
Background ... 42
Physiology of NaHCO₃ supplementation ... 43
Chapter Six: ... 127
The effects of NaHCO$_3$ and NaCl loading on haematocrit and high-intensity cycling performance ... 127
Abstract ... 128
Introduction ... 129
Methods ... 131
Results ... 135
Discussion ... 140
Conclusions .. 143
Chapter Seven: ... 145
Thesis Summary ... 145
Limitations ... 153
Practical Applications .. 155
Future Directions ... 159
REFERENCES .. 161
APPENDICES ... 175
APPENDIX I: Circulating adiponectin concentration is altered in response to high-intensity interval training ... 175
APPENDIX II: Participant Information Sheets and Informed Consent 195
APPENDIX III: Questionnaires ... 214
APPENDIX IV: Diaries ... 222