Some evolutionary and ecological implications of colour variation in the sea urchin *Heliocidaris erythrogramma*

by

Jane Growns B.Sc. Jt. Hons. (U.C.N.W., Bangor)

submitted in fulfilment of the requirements for the degree of
Doctor of Philosophy

University of Tasmania
Hobart

December 1989
I hereby declare that this thesis contains no material which has been accepted for the award of any degree or diploma in any university and that, to the best of my knowledge and belief, the thesis contains no copy or paraphrase of material previously published or written by another person, except where due reference is made in the text.

Jane Growns
TABLE OF CONTENTS

ABSTRACT

ACKNOWLEDGEMENTS

CHAPTER 1 GENERAL INTRODUCTION

CHAPTER 2 THE POLYMORPHISM, ITS PIGMENTS AND POSSIBLE GENETIC BASIS

2.1 INTRODUCTION
2.2 DESCRIPTION OF THE POLYMORPHISM
2.3 METHODS
 - 2.3.1 Combinations of pigmentation
 - 2.3.2 Identification of pigments from the calcareous parts
 - 2.3.3 Identification of echinochrome A and histology
 - 2.3.4 Diet preferences among morphs
 - 2.3.5 Colour change experiments
2.4 RESULTS
 - 2.4.1 Variation in test and spine colours
 - 2.4.2 Distribution of spinochromes among phenotypes
 - 2.4.3 Identification of naphthoquinone pigments
 - 2.4.4 Composition of the dermal pigment granules
 - 2.4.5 Diet preferences among morphs
 - 2.4.6 Colour change
2.5 DISCUSSION

CHAPTER 3 TEMPORAL STABILITY OF MORPH FREQUENCIES

3.1 INTRODUCTION
3.2 METHODS
3.3 RESULTS
TABLE OF CONTENTS (continued)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.1 Stability of morph proportions during the study</td>
<td>42</td>
</tr>
<tr>
<td>3.3.2 Variation in dermis colour proportions between size classes</td>
<td>49</td>
</tr>
<tr>
<td>3.4 DISCUSSION</td>
<td>61</td>
</tr>
</tbody>
</table>

CHAPTER 4 GEOGRAPHICAL VARIATION IN MORPH FREQUENCIES AND ENVIRONMENTAL ASSOCIATIONS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 INTRODUCTION</td>
<td>64</td>
</tr>
<tr>
<td>4.2 MATERIALS AND METHODS</td>
<td>68</td>
</tr>
<tr>
<td>4.2.1 Collection of data</td>
<td>68</td>
</tr>
<tr>
<td>4.2.2 Analysis of data</td>
<td>74</td>
</tr>
<tr>
<td>4.4 RESULTS AND DISCUSSION</td>
<td>82</td>
</tr>
<tr>
<td>4.4.1 Small scale geographic variation in proportions of morphs</td>
<td>82</td>
</tr>
<tr>
<td>4.4.2 Distribution of morphs over entire study area</td>
<td>90</td>
</tr>
<tr>
<td>4.4.3 Spatial patterns in dermis colour proportions</td>
<td>99</td>
</tr>
<tr>
<td>4.4.4 Association between dermis and spine colour</td>
<td>99</td>
</tr>
<tr>
<td>4.4.5 Relationships between dermis colour and environmental data</td>
<td>102</td>
</tr>
<tr>
<td>4.4.6 Evidence for processes affecting population differentiation</td>
<td>107</td>
</tr>
<tr>
<td>4.4.7 Water currents within and between the geographical regions</td>
<td>117</td>
</tr>
<tr>
<td>4.5 GENERAL DISCUSSION</td>
<td>119</td>
</tr>
</tbody>
</table>

##CHAPTER 5 VARIATION BETWEEN MORPHS IN MORPHOLOGY, MICROHABITAT, REPRODUCTION AND TUBE FEET STRENGTH

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 INTRODUCTION</td>
<td>124</td>
</tr>
<tr>
<td>5.2 METHODS</td>
<td>126</td>
</tr>
<tr>
<td>5.2.1 Morphometrics and meristics</td>
<td>126</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS (continued)

5.2.2 Microhabitat and behavioural variation 129
5.2.3 Reproductive cycle and investment 131
5.3.4 Tube feet strength experiment 131

5.3 RESULTS
5.3.1 Morphometrics and meristics 132
5.3.2 Microhabitat and behavioural variation 134
5.3.3 Reproductive cycle and investment 152
5.3.4 Tube feet strength experiment 152

5.5 DISCUSSION

CHAPTER 6 GENERAL DISCUSSION

REFERENCES 169

APPENDICES 179
Appendix 1 Laboratory breeding trials. 179
Appendix 2a Dermis colour data for all sites 189
Appendix 2b Morph data for all sites 190
Appendix 3 Environmental data for all sites 191
Appendix 4a Means, standard errors and sample sizes for morphometric and meristic variables, for red and white dermis urchins and pooled data from Tinderbox 192
Appendix 4b Means, standard errors and sample sizes for morphometric and meristic variables, for red and white dermis urchins and pooled data from Ling Reef. 193
Appendix 4c Means, standard errors and sample sizes for morphometric and meristic variables, for Fortescue Bay urchins. 194
Appendix 4d Means, standard errors and sample sizes for morphometric and meristic variables, for red and white dermis urchins and pooled data from Cowrie Pt. 195
ABSTRACT

An investigation into the evolutionary and ecological implications of variation in the external colouration of the sea urchin *Heliocidaris erythrogramma* was made. Two different pigment systems create a complex polymorphism; red granules of echlonochrome A in the dermis occur in varying densities, and purple and green naphthoquinone pigments are found in the calcareous test and spines. Many morphs may occur within one population, but the proportions of morphs vary markedly between sites.

Evidence from the observed variability and chemistry of the pigments strongly indicates that the variation has a genetic basis. Breeding studies which would have resolved this question were unsuccessful, but did show that all crosses between morphs developed and metamorphosed successfully.

Repeated sampling of 15 sites showed that morph proportions were stable at most sites over the 35 months of the study. Geographic variation in the proportions of morphs was determined from samples from 49 sites. Environmental variables were recorded and the exposure of each site to wave action was estimated using algal communities to develop an Algal Exposure Index (A.E.I.). Stepwise linear regression analysis indicated that the A.E.I. and amount of algal cover were the only environmental factors noted that were useful predictors of dermis colour proportions.

Five hypotheses were developed (two selective and three stochastic) of processes which might be affecting morph proportions in the study area; these were tested using Mantel's non-parametric test. The results suggest that four geographical regions each have different patterns of morph distribution which are controlled by unique combinations of selection (related to exposure) and gene flow. These results are generally supported by what is known of water currents in each region, as most gene flow in *H. erythrogramma* will occur due to movement of pelagic larvae.

Morphological data showed slight differences between urchins of different dermis colour at one site, but no differences between urchins with different coloured spines. There were significant differences between urchins at different sites. Surveys of urchin microhabitats indicated that (1) urchins of the same dermis colour tend to occur next to each other, (2) white dermis urchins tend to occur under rocks more often than red dermis urchins, and (3) urchins which are hidden under rocks tend to 'cover' with pieces of shell, algae or pebbles to a lesser extent than urchins which occur on the upper surfaces of rocks. A laboratory experiment indicated that, although the podia (tube feet) of red and white dermis urchins were initially of comparable strength, red dermis urchins tended to tire more quickly. No differences between morphs were found in the time of maturation of gonads or the size of gonads relative to body weight.
ACKNOWLEDGEMENTS

I gratefully acknowledge all the people that helped me in the preparation of this thesis.

Peter Whyte, who suggested the project in the first place.

Mike Bennett, Paul Cramp, Mike Driessen, Andrew Fleming, Ivor Growns, Premek Hamr, Lee Hamr, Rowan Hughes, Paul Humphries, Jean Jackson, John Kalish, Klobs, Ron Mawbey, Peter Mooney, Sarah Munks, Mark Nelson, Dominic O'Brien, Steve Reid, Sean Riley, David Ritz, Craig Sanderson, Andrew West, Peter Whyte, Gus Yearsley and especially Richard Holmes, who acted as diving partners and field assistants and without whom this project would not have been possible.

Andrew Constable, for collecting the data from Port Phillip Bay for me and for comments on part of the thesis.

Richard Holmes, Wayne Kelly, Ron Mawbey, and Barry Rumbold, for technical assistance both in the field and in the laboratory.

The Tasmanian Department of Sea Fisheries, for the use of their aquarium facilities.

Dr. Adrian Blackman, for the use of facilities in his laboratory and helping me understand the chemistry. Charlie Dragar, without whom I might not have survived the chemistry.

Glen McPherson, Paul Humphries, Bob Black, Mike Johnson, Alastair Richardson, and Kit Williams, for statistical and computing help.

Craig Sanderson, for help in algal taxonomy and developing the AEI.

Adrian Bradley, for help with the histology.

Bob Black, Paul Humphries, Mike Johnson, and my supervisor, David Ritz, for careful and constructive criticism of the manuscript.

I would like to thank the Department of Zoology of the University of Western Australia and particularly Bob Black and Mike Johnson for hosting me during the writing of the thesis.

All my friends who supported and encouraged me, especially Sarah and Jean, Prem and Lee, and Humphries I suppose. Special thanks must go to Ivor for making it all worthwhile.