GEOLGY AND GENESIS OF THE
PERMATA - BATU BADINDING - HULUBAI AND KERIKIL
AU-AG LOW SULFIDATION EPITHERMAL DEPOSITS,
MT MURO, KALIMANTAN, INDONESIA.

by

Andrew T. Wurst
B.Sc. (Hons)
(University of Adelaide)

UNIVERSITY OF TASMANIA

Submitted in fulfillment of the requirements for the degree
of
Doctor of Philosophy

University of Tasmania
Australia
June, 2004
DECLARATION AND AUTHORITY OF ACCESS

This thesis contains no material which has been accepted for the award of any other degree or diploma by the University of Tasmania or any other institution and, to the best of my knowledge and belief, contains no material previously published or written by another person except where due reference is made in the text of the thesis.

Andrew T. Wurst
Date: 31/10/2004

This thesis is not to be made available for loan and copying until December 1, 2005. Following that time, this thesis may be made available for loan and limited copying in accordance with the Copyright Act of 1968.

Andrew T. Wurst
Date: 31/10/2004
DEDICATION

For my grandfathers

Alfred Martin Reichstein
(1920 to 1999)
and
Phillip Wilfred Wurst
(1921 to 1996)
ABSTRACT

The Permata-Batu Badinding-Hulubai (PBH) vein and Kerikil breccia-hosted deposits of Mt Muro, Kalimantan, Indonesia (10.4 Mt at 3.8 g/t Au and 101 g/t Ag) represent two styles of Au-Ag, low sulfidation epithermal deposit. These two systems provide important information on the processes and mechanisms of metal deposition under epithermal conditions.

PBH and Kerikil volcanic host rocks range from andesitic to basaltic in composition and are correlated with Early Miocene Sintang volcanism and Pliocene Metalung volcanism of Kalimantan. PBH and Kerikil exhibit similar structural trends and north-northwest dilational settings that are the result of north-northwest directed compression and dextral movement on major northwest striking basement structures. The different characteristics of the two deposits are attributed to different structural, lithological and hydrological controls that effected the nature of ore deposition.

The PBH deposit is hosted within extrusive and intrusive coherent volcanic rocks with minor volcaniclastic and sedimentary rocks. These units were deposited on the slopes of a stratovolcano and into valleys and pull-apart basins. Structure is dominated by north-northwest, northwest and northeast striking fractures, faults and veins on both a regional and deposit scale. The main deposit at PBH is hosted by a 2.2 km long, mineralized, cymoid structure which strikes north-northwest to north-south and dips steeply. Six stages of vein infill are recognized at PBH: stage 1 jasper; stage 2 microcrystalline quartz; stage 3 microcrystalline quartz + sulfide + sulfosalt; stage 4 base metal sulfide + sulfosalt + quartz; stage 5 amethyst and stage 6 carbonate. Early infill stages are typically fine-grained and microcrystalline with colloform, cockade and crustiform textures. Later infill stages are coarse-grained and crystalline with crustiform, colloform, cockade and dogstooth textures. Infill stage compositions and textures are linked to the dilation history of the vein and Riedel-style mechanics. Gangue mineralogy is dominated by polymorphs of silica (quartz, chalcedony and amethyst) with lesser adularia and clays. Carbonate is only present in the last vein stage. Ore mineralogy consists of pyrite, sphalerite, galena, Ag-Sb sulfosalts, Ag sulfides, Ag tellurides, native Ag and electrum. Jalpaite, freibergite and acanthite are all important hosts of Ag. Electrum ranges from 219 to 761 fine and contains trace amounts of Hg and Cu. PBH exhibits vertical metal zonation, with Au and Ag deposited at bonanza grades at higher elevations with Cu, Pb and Zn deposited below. Alteration is developed principally in the hanging-wall to the deposit and is well zoned, with disruption to zonation occurs where hydrothermal fluids have exploited more permeable and/or reactive beds. Alteration ranges from halloysite + kaolinite + silica assemblages at shallow depths to illite
+ sericite + pyrite + adularia + quartz surrounding the deposit to phengite/sericite +
adularia + pyrite + quartz and chlorite + carbonate + albite + epidote + quartz, both
distal to the deposit and at depth. Evidence for boiling within the hydrothermal system is
recognized from the presence of bladed quartz after carbonate, adularia and two phase
(liquid-vapor) fluid inclusions. Sulfur and carbon isotope data indicate a magmatic source
for sulfur in pyrite and carbon in carbonate. δ18O values of infill stage quartz show a trend
towards lower values with successively later infill vein stages. δ18O values of whole rock
alteration facies have lower values closer to the vein and higher values associated with
younger overprinting alteration assemblages.

Based on these characteristics, PBH can be classified as a sericite/illite-adularia-
quartz, Ag-Au low sulfidation epithermal vein deposit. The distribution and zonation of
alteration, mineral textures, mineral composition and metals within the mineralized
structures are a direct result of the mechanical and physico-chemical processes of
depressurization (through structure dilation) and consequent boiling, mixing and cooling
of the hydrothermal fluids. PBH is a single dilating conduit which effectively focused fluid
flow and boiling is the dominant mechanism of metal deposition. Alternating periods of
boiling produced the banded, colloform, crustiform and cockade vein textures observed at
PBH. The physico-chemical processes of boiling-related mineral deposition resulted in
discrete zoning of metals. Bicarbonate fluids, created above the boiling zone, were
excluded from the system by temperature and buoyancy effects. After the system waned
the bicarbonate fluids were able to migrate down into the system and deposit carbonate in
the last infill stage.

The Kerikil deposit is hosted by coherent volcanic lavas and intrusions of a
stratovolcano vent environment. Kerikil is divided into three main deposits that total over
900 m in length and are confined by north-northwest and north-south striking structures.
Eight vein and breccia stages are recognized within three main periods of mineralization at
Kerikil. During period 1, infill stages 1 to 4 are dominated by quartz gangue. In period 2,
infill stages 5 to 7 are characterized by the presence of rhodochrosite as an important
gangue mineral. In period 3, infill stages 8 and 9 are represented by base metal and pyrite
veins, respectively, which crosscut all earlier infill stages. The main ore stages are stage 2
(microcrystalline quartz + sulfide + sulfosalt), stage 5 (rhodochrosite + sulfide + sulfosalt)
and stage 8 (base metal sulfide + quartz). Ore mineralogy is dominated by pyrite and
chalcopyrite with minor sphalerite, galena, Ag sulfosalts and electrum. Selenian jalpaite,
acanthite, and native Ag are important hosts of Ag. Electrum is 480 to 764 fine and is
typically observed as inclusions in pyrite and association with chalcopyrite. Metal zonation
is poorly developed at Kerikil with Au, Ag, Cu, Pb and Zn precipitating at the same level
within the system. A brecciated system and multiple fluid pathways, allow the downwards migration and mixing of oxidizing ground waters and bicarbonate waters with geothermal fluids, thus favoring both Au and base metal precipitation together. A broad alteration zonation with depth is apparent at Kerikil. Alteration ranges from halloysite + kaolinite + quartz at shallow depths to illite/sericite + adularia + pyrite + quartz proximal to the deposit and chlorite + carbonat[e + albite + epidote + quartz distally and at depth. At Kerikil, there is overprinting of the illite/sericite + adularia + pyrite + quartz assemblages by the kaolinite + halloysite + quartz facies at shallow levels and deeper in the deposit. Evidence for boiling within the conduit comes from the presence of bladed carbonate, adularia and two phase fluid inclusions. Sulfur and oxygen isotope values indicate a magmatic source for sulfur in pyrite and carbon in carbonate. Carbon and oxygen isotope values suggest that rhodochrosite at Kerikil was precipitated from surficial bicarbonate waters. $\delta^{18}O$ values of infill stage quartz are relatively constant indicating a fluid in equilibrium with andesite host rocks. $\delta^{18}O$ values of whole rock alteration facies, display a trend towards lower values with depth and higher values at surface, associated with late stage alteration.

Kerikil is an illite, Au-Ag, quartz-carbonate, low sulfidation epithermal breccia and stockwork deposit. Kerikil consists of breccias, veins, faults and stockwork. Hydrothermal fluids have been able to boil, cool and mix with bicarbonate waters through enhanced permeability facilitated by repeated sealing, brecciation and re-brecciation of the coherent volcanic host rocks. Sealing of multiple fluid conduits and subsequent rupturing gives rise to complex overprinting mineralogical and textural relationships, complex mineral paragenesis, metal and alteration zonation. Boiling is an important process when fluid pathways are open. However, sustained boiling precipitates microcrystalline quartz which seals fluid pathways, allowing the influx of earlier boiling derived bicarbonate fluids into the former up flow zone. Subsequent over-pressurization and seismic rupture leads to seal failure and the direct contact of bicarbonate waters above the seal with boiling hydrothermal fluids from below the seal. Precious metals and base metals then precipitate together due to the combined physico-chemical processes of boiling and mixing.

Study of the volcanological, structural, mineralogical, metallogenic, alteration and isotopic characteristics of the PBH and Kerikil deposits has led to geological and geochemical vectors being established to aid in mineral exploration at Mt Muro.
ACKNOWLEDGEMENTS

Many people have offered advice, assistance, support and friendship over the course of this research and the following list attempts to thank all of these, and I extend a general acknowledgement to any I may have overlooked.

Firstly, I would like to thank my supervisor, Assoc. Prof. Bruce Gemmell who has always provided help, encouragement, and guidance in the course of the research. I have appreciated Bruce's friendship, and he has always been a source of inspiration through his enthusiasm for my project. Dr. David Cooke, my secondary supervisor, was always more than willing to provide support, friendship and guidance whenever it was required. Careful and tedious corrections by Bruce, Dave and Dr. Cari Deyell were invaluable in the final drafts of this thesis. I am also especially grateful to Dr. Stuart Simmons, Prof. Jocelyn McPhie, Dr. Robert Scott, Dr. Robina Sharpe, Wally Hermann and Mike Blake, as part of the Australian Industries Mineral Research Foundation (AMIRA) P588 (Alteration in Low Sulfdation Epithermal Systems) Project Team, who all provided excellent critique towards the research. All the academic staff and researchers at CODES and the School of Earth Sciences under the leadership of Prof. Ross Large, were also a constant source of inspiration. I would like to thank Ross and CODES for the opportunity and financial support to attend conferences and visit many different mineral deposits across several continents during the course of my studies; the experience was invaluable and rewarding.

The initial stages of this project were aided financially and logistically by Aurora Gold Ltd. and Indo Muro Kencana (IMK) Ltd., Mt Muro, Indonesia. IMK staff were always helpful in providing assistance and discussions on aspects of Mt Muro Geology under sometimes trying work conditions. In particular, I am grateful to Trevor Bradley and Peter Brown for the conceptualization and management of the project, as well as the IMK mine development team; Julie Ried, Andrew Grieve, Priyo, Trejanto, Tawoco, Ambung and Avar; and field assistants; Luther, Zubier, and Putuh (who helped lay out core and taxied me to the pits, while simultaneously providing me with Indonesian language lessons), Hugo Hooglievliet and his mine geology team (who provided grade control data and discussions on various aspects of the pits), Dave Hester (for assistance with computing problems and expertise in diamond gemstone evaluation), Donny Eka and his survey team (for help with pit survey pickups), Has and Harry (for arranging and building
boxes for rock transportation back to Australia), Operations Manager; Dave Morrison and Mine Managers; Dean Stewart and Rohan Johnson (for logistical support and accommodation during the course of my stay at Dirung Camp). The final stages of this project were funded through the AMIRA P588 project and an Industry APAI grant, and to this part, I thank Alan Goode as the AMIRA representative.

I gratefully acknowledge Doug Kirwin and Dr. Chris Wilson from Ivanhoe Mines Ltd. for giving me the great experience of working in Mongolia during the closing stages of my studies and also supplying me with a computer to aid in the completion of this thesis.

The CODES and Central Science Laboratory (CSL) support staff are greatly thanked for their role in providing technical and logistical assistance. I would like to thank June Pongratz who was always willing to help in all drafting and publishing matters, Peter Cornish and Di Stephens for logistical support, Simon Stevens and his crew for their thin section and lapidary work, Dr. David Steele for assistance and guidance on the electron microprobe and Dr. Phil Robinson, Kate McGoldrick and Nilar Hlaing for providing timely geochemistry data. I also appreciate Dr. Mark Barton's (University of Arizona) help with oxygen isotope analyses and making my stay in Tucson, Arizona a pleasant one.

Numerous post-doctoral fellows and Ph.D. students at the School of Earth Sciences have been a constant source of inspiration and amusement over the past years while at the same time providing friendship, support and a useful and stimulating academic forum for inspiring discussion (wine tasting nights). To all of them I extend my thanks and heartfelt best wishes for whatever they will do and wherever they may go. I would like to make special mention of Andrew Davies, Kirstie Simpson, Alan Wilson, Mike Buchanan, Glen Masterman, Darryl Clark, Neil Martin, Vanessa Lickfold, Steve Boden, Catherine Reid, Andrew Rae, Kate Bull and Tim Ireland, as well as former room-mates Kieren Howard, Roman Leslie, Rohan Wolfe and Catheryn Gifkins for their camaraderie, friendship and discussions over the years at CODES.

I would also like to thank my parents and family for their love, support and encouragement from afar, during my entire professional and academic career, which has taken me to many exotic places but has often kept me too long away from home.

Finally and utmostly, I am, and always will be indebted to Cari for her patience, love, help, support, companionship, and just for always being there when needed most.
Table of Contents

Abstract ... 1

Acknowledgements .. iv

Table of Contents ... vi

List of Figures .. xiv

List of Tables .. xxi

Chapter 1. Introduction

1.1 Preamble .. 1

1.2 Location, access and physiography .. 2

1.3 History of mining and exploration .. 3

1.4 Mineralization .. 5

1.5 Previous studies at Mt Muro .. 7

1.6 Objectives of this study .. 8

1.7 Methodology ... 8

1.8 Organization of the thesis .. 9

1.9 Limitations and hindrances to the study ... 10

Chapter 2. Regional Geology and Metallogeny

2.1 Introduction ... 11

2.2 Geology of Borneo ... 12

2.3 Geology and tectonic history of the Tertiary Kutai Basin .. 16

2.4 Geology of the Mt Muro CoW .. 18

2.5 Tertiary epithermal gold deposits of Kalimantan .. 20

Chapter 3. Volcanic Facies, Architecture and Geochemistry

3.1 Introduction ... 22

3.2 Terminology .. 24

3.3 PBH and Kerikil primary facies .. 24

3.3.1 Coherent andesite facies ... 24

3.3.2 Non-stratified monomict andesite breccia facies .. 26

3.3.3 Non-stratified sediment matrix andesite monomict breccia facies 28

3.3.4 Coherent basaltic andesite facies .. 28

3.3.5 Coherent basalt facies .. 30

3.4 PBH and Kerikil syn-eruptive volcaniclastic facies ... 33
CHAPTER 4. STRUCTURE

4.1 Introduction.. 75
4.2 Island-scale structural trends and features... 75
4.3 District-scale structural features... 77
 4.3.1 Remote sensing and geophysical interpretation.. 77
 4.3.2 Faulting... 82
 4.3.3 Folding... 83
 4.3.4 Mineralized structures.. 84
4.4 PBH structural features.. 90
 4.4.1 Pre-mineralization structures.. 92
 4.4.2 Mineralized structures.. 94
CHAPTER 5 MINERALIZATION AND PARAGENESIS

5.1 Introduction ... 119

5.2 PBH: Infill stages, description, distribution and timing relationships .. 120

5.2.1 Stage 1 jasper infill .. 120

5.2.2 Stage 2 microcrystalline quartz infill 122

5.2.3 Stage 3 microcrystalline quartz + sulfide + sulfosalt infill ... 125

5.2.4 Stage 4 crystalline quartz + base metal sulfide infill .. 125

5.2.5 Stage 5 amethyst infill 127

5.2.6 Stage 6 carbonate infill 129

5.3 Interpretation of PBH vein stages 130

5.4 Kerikil vein and breccia stage infill, description, and distribution .. 132

5.4.1 Stage 1 microcrystalline infill 134

5.4.2 Stage 2 microcrystalline quartz + sulfide + sulfosalt infill .. 138

5.4.3 Stage 3 amethyst infill 138

5.4.4 Stage 4 carbonate infill 139

5.4.5 Stage 5 microcrystalline quartz + rhodochrosite + sulfide + sulfosalt infill 140

5.4.6 Stage 6 microcrystalline infill + rhodochrosite infill .. 142

5.4.7 Stage 7 amethyst + rhodochrosite infill 142

5.4.8 Stage 8 base metal sulfide + quartz infill 145

5.4.9 Stage 9 pyrite infill ... 146
5.5 Interpretation of Kerikil infill stages and periods.......................... 148

5.6 PBH ore mineralogy... 150
 5.6.1 Pyrite .. 151
 5.6.2 Sphalerite ... 151
 5.6.3 Galena .. 151
 5.6.4 Chalcopyrite ... 153
 5.6.5 Covellite ... 153
 5.6.6 Jalpaite .. 153
 5.6.7 Acanthite ... 155
 5.6.8 Silver sulfosalts .. 155
 5.6.9 Unidentified Silver sulphides, sulfosalts and tellurides 155
 5.6.10 Silver ... 155
 5.6.11 Electrum ... 157

5.7 Kerikil ore mineralogy .. 157
 5.7.1 Pyrite (+ marcasite).. 157
 5.7.2 Chalcopyrite .. 159
 5.7.3 Sphalerite ... 162
 5.7.4 Galena .. 162
 5.7.5 Covellite ... 162
 5.7.6 Jalpaite .. 162
 5.7.7 Acanthite ... 163
 5.7.8 Silver sulfosalts .. 163
 5.7.9 Unidentified Silver sulphides, sulfosalts and tellurides 163
 5.7.10 Silver ... 166
 5.7.11 Electrum ... 166

5.8 Discussion of PBH and Kerikil ore and sulfide mineralogy 166

5.9 Supergene mineralization .. 167

5.10 PBH gangue mineralogy .. 168
 5.10.1 Silica polymorphs ... 168
 5.10.2 Adularia .. 173
 5.10.3 Carbonates ... 174
 5.10.4 Clays .. 174

5.11 Kerikil gangue mineralogy .. 176
 5.11.1 Silica polymorphs ... 176
 5.11.2 Adularia .. 178
 5.11.3 Carbonates ... 178

5.12 Discussion of PBH and Kerikil gangue mineralogy 180

5.13 PBH and Kerikil infill stage geochemistry 189
Table of Contents

Chapter 6. Metal Distribution, Zonation and Ratios

6.1 Introduction .. 209
6.2 District metal anomalism .. 209
6.3 PBH metal distribution .. 210
 6.3.1 Vertical metal distribution at PBH 211
 6.3.2 Lateral metal distribution at PBH 214
6.4 PBH metal ratios ... 216
6.5 Kerikil metal distribution 217
 6.5.1 Vertical metal distribution at Kerikil 219
 6.5.2 Lateral metal distribution at Kerikil 219
6.6 Kerikil metal ratios ... 224
6.7 Summary ... 227

Chapter 7. Alteration Facies, Distribution and Geochemistry

7.1 Introduction .. 229
7.2 District scale alteration ... 230
7.3 PBH alteration facies .. 230
 7.3.1 Chlorite + carbonate + albite + epidote + pyrite
 (CCA) alteration facies ... 232
 7.3.2 Quartz + sericite + phengite + adularia + pyrite
 (SPA) alteration facies ... 232
 7.3.3 Quartz + illite + adularia + pyrite (QIP) alteration facies
7.3.4 Kaolinite alteration facies 236
7.3.5 Silica alteration facies 240
7.3.6 Halloysite alteration facies 240
7.3.7 PBH alteration facies paragenesis 240
7.4 Kerikil alteration facies 243
 7.4.1 Chlorite + carbonate + albite + epidote + pyrite
TABLE OF CONTENTS

7.4.1 quartz + illite + adularia + pyrite alteration facies
7.4.2 Silica alteration facies
7.4.3 Kaolinite alteration facies
7.4.4 Halloysite alteration facies
7.4.5 Kerikil alteration facies (paragenesis of altered facies)

7.5 Short wave infra-red (SWIR) spectral studies
7.6 X-ray diffraction (XRD) studies
 7.6.1 Introduction
 7.6.2 Sampling and analytical techniques
 7.6.3 Summary of XRD results
 7.6.4 Comparison of XRD to SWIR

7.7 Alteration distribution and zonation
 7.7.1 PBH vertical distribution of alteration facies
 7.7.2 PBH lateral distribution of alteration facies
 7.7.3 Kerikil vertical distribution of alteration facies
 7.7.4 Kerikil lateral distribution of alteration facies

7.8 Interpretation and discussion alteration mineralogy, facies and
distribution at PBH and Kerikil

7.9 Alteration whole rock geochemistry
 7.9.1 Introduction
 7.9.2 Sampling and analytical techniques
 7.9.3 Alteration box plot
 7.9.4 Alteration bubble box plots
 7.9.5 PBH major element variations with respect to alteration facies
 7.9.6 PBH trace element variations with respect to alteration facies
 7.9.7 Kerikil major element variations with respect to alteration facies
 7.9.8 Kerikil trace element variations with respect to alteration facies
 7.9.9 Discussion of PBH and Kerikil alteration facies geochemistry

7.10 Summary

CHAPTER 8. FLUID CHEMISTRY

8.1 Introduction
<table>
<thead>
<tr>
<th>8.2 Fluid Inclusion data review</th>
<th>284</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.2.1 PBH fluid inclusions</td>
<td>284</td>
</tr>
<tr>
<td>8.2.2 Kerikil fluid inclusions</td>
<td>285</td>
</tr>
<tr>
<td>8.2.3 Implications of fluid inclusion data</td>
<td>286</td>
</tr>
<tr>
<td>8.3 Stable isotope geochemistry</td>
<td>287</td>
</tr>
<tr>
<td>8.3.1 Analytical methods</td>
<td>287</td>
</tr>
<tr>
<td>8.3.2 Sulfur isotope results</td>
<td>288</td>
</tr>
<tr>
<td>8.3.3 Sulfur isotope composition of sulfide</td>
<td>288</td>
</tr>
<tr>
<td>8.3.4 Carbon and oxygen isotope results</td>
<td>290</td>
</tr>
<tr>
<td>8.3.5 Carbon and oxygen isotope composition of carbonate</td>
<td>290</td>
</tr>
<tr>
<td>8.3.6 Oxygen isotope results (quartz and whole rock)</td>
<td>296</td>
</tr>
<tr>
<td>8.3.7 Oxygen isotope composition of quartz from PBH infill stages</td>
<td>298</td>
</tr>
<tr>
<td>8.3.8 Oxygen isotope composition of quartz from Kerikil infill stages</td>
<td>298</td>
</tr>
<tr>
<td>8.3.9 PBH alteration facies whole rock oxygen isotopes</td>
<td>300</td>
</tr>
<tr>
<td>8.3.10 Kerikil alteration facies whole rock oxygen isotopes</td>
<td>301</td>
</tr>
<tr>
<td>8.4 Summary</td>
<td>304</td>
</tr>
</tbody>
</table>

Chapter 9. The Genesis of the PBH and Kerikil Deposits

9.1 Introduction	306
9.2 Phase 1: Volcanic emplacement and structural setting	306
9.3 Phase 2: Hydrothermal system evolution and ore deposition	310
9.4 Phase 3: Late stage magmatism	314
9.5 Phase 4: Uplift, weathering and erosion	314
CHAPTER 10. CONCLUSIONS

10.1 Conclusions .. 317
10.2 Implications for exploration ... 322
10.3 Future Research Directions ... 329

REFERENCES .. 331

APPENDICES

Appendix 1 Drill hole catalogue .. 349
Appendix 2 Sample catalogue .. 351
Appendix 3 Whole rock geochemistry data .. 375
Appendix 4 Microprobe data ... 384
Appendix 5 SWIR spectral data .. 391
Appendix 6 Sulfur isotope data .. 420
Appendix 7 Carbon and Oxygen isotope data .. 421

MAPS (Located in back pocket)

Map 1 Permata 165 RL pit mapping
Map 2 Batu Badinding-Hulubai 145 RL pit mapping
Map 3 Kerikil 170 RL pit mapping
List of Figures

Chapter 1 Introduction

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Location of the Mt Muro Au-Ag epithermal deposits, Kalimantan, Indonesia</td>
</tr>
<tr>
<td>1.2</td>
<td>Views around Mt Muro</td>
</tr>
<tr>
<td>1.3</td>
<td>Mt Muro mining views</td>
</tr>
</tbody>
</table>

Chapter 2 Regional Geology and Metallogeny

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Indonesian arcs</td>
</tr>
<tr>
<td>2.2</td>
<td>Geology of Borneo</td>
</tr>
<tr>
<td>2.3</td>
<td>Geology of Central and East Kalimantan</td>
</tr>
<tr>
<td>2.4</td>
<td>Stratigraphy of the Tertiary Kutai Basin, Kalimantan</td>
</tr>
<tr>
<td>2.5</td>
<td>Geology of the Mt Muro CoW</td>
</tr>
</tbody>
</table>

Chapter 3 Volcanic Facies, Architecture and Geochemistry

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>PBH and Kerikil volcanic facies</td>
</tr>
<tr>
<td>3.2</td>
<td>Coherent andesite facies</td>
</tr>
<tr>
<td>3.3</td>
<td>Non-stratified monomict andesite breccia facies</td>
</tr>
<tr>
<td>3.4</td>
<td>Non-stratified sediment matrix andesite monomict breccia facies</td>
</tr>
<tr>
<td>3.5</td>
<td>Coherent basaltic andesite facies</td>
</tr>
<tr>
<td>3.6</td>
<td>Coherent basalt facies</td>
</tr>
<tr>
<td>3.7</td>
<td>Tuff facies</td>
</tr>
<tr>
<td>3.8</td>
<td>Lapilli tuff facies</td>
</tr>
<tr>
<td>3.9</td>
<td>Poorly sorted rounded exotic polymict breccia facies</td>
</tr>
<tr>
<td>3.10</td>
<td>Poorly sorted rounded polymict milled breccia facies</td>
</tr>
<tr>
<td>3.11</td>
<td>Non-stratified coarse poorly sorted clast supported polymict breccia facies</td>
</tr>
<tr>
<td>3.12</td>
<td>Talus breccia vs. debris breccia</td>
</tr>
<tr>
<td>3.13</td>
<td>Non-stratified poorly sorted muddy matrix supported polymict breccia facies</td>
</tr>
<tr>
<td>3.14</td>
<td>Stratified volcaniclastic mudstone facies</td>
</tr>
<tr>
<td>3.15</td>
<td>Geological cross sections across the PBH deposit</td>
</tr>
<tr>
<td>3.16</td>
<td>Distribution of the proximal slope, medial valley fill and distal basin environments of deposition at PBH and Bantian - Batu Tembak</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 3.17 Geological cross sections across the Kerikil deposit........ 50
Figure 3.18 Distribution of the central vent environment of deposition at Kerikil... 51
Figure 3.19 SAR image and first vertical derivative magnetic image showing position of PBH and Kerikil in relation to circular SAR features and magnetite destruction halos........... 52
Figure 3.20 SiO₂ discrimination of PBH and Kerikil volcanics compared with other Tertiary volcanics from Kalimantan........... 59
Figure 3.21 Major element bivariate diagrams for PBH and Kerikil coherent volcanics... 60
Figure 3.22 Trace element bivariate diagrams for PBH and Kerikil coherent volcanics... 62
Figure 3.23 Chondrite-normalized REE profiles of selected PBH and Kerikil coherent volcanics compared with the Sintang volcanics ... 63
Figure 3.24 La₆₉/Yb₆₉ vs. SiO₂ for PBH and Kerikil coherent volcanics .. 64
Figure 3.25 Nb-Y and Nb-Zr discrimination diagrams for coherent volcanic facies at Kerikil and PBH 65
Figure 3.26 Ti/Zr discrimination of PBH and Kerikil volcanics compared with other Tertiary volcanics from Kalimantan........ 66
Figure 3.27 Nb/Y and Zr/TiO₂ discrimination diagrams for coherent volcanic facies at Kerikil and PBH 67
Figure 3.28 Ti-Zr-Y, Ti-Zr, and Ti-V discrimination diagrams for coherent volcanic facies at Kerikil and PBH 68
Figure 3.29 Zr/Y-Zr and Zr/Y-Ti-Y discrimination diagrams for coherent volcanic facies at Kerikil and PBH 70
Figure 3.30 Facies environments associated with a sub-aerial andesitic stratovolcano compared with facies and features observed at PBH and Kerikil 74

CHAPTER 4 STRUCTURE

Figure 4.1 Geology of Borneo.. 76
Figure 4.2 Synthetic aperture radar (SAR) features, Mt Muro 78
Figure 4.3 First vertical derivative magnetic features, Mt Muro................. 81
Figure 4.4 Folding at Mt Muro ... 83
Figure 4.5 West-northwest mineralized structures 85
Figure 4.6 Photographs of west-northwest mineralized structures........... 86
FIGURE 4.7 North-northwest mineralized structures 88
Figure 4.8 Batu Tembak deposit ... 89
Figure 4.9 PBH and Bantian-Batu Tembak (BBT) veins showing structure and volcanic environments 91
Figure 4.10 PBH structural elements .. 93
Figure 4.11 Permata, Batu Badingding and Hulubai deposit
Vulcan™ model ... 95
Figure 4.12 Kerikil 2 stockwork and breccia zone 98
Figure 4.13 Kerikil complex with main structural features 99
Figure 4.14 Kerikil 1 volcanic layering and structural controls on volcanics ... 100
Figure 4.15 Kerikil deposit Vulcan™ ... 101
Figure 4.16 Kerikil pitwall stereonets and rose diagrams of fracture arrays ... 102
Figure 4.17 Kerikil 2 northwest structures 103
Figure 4.18 Kerikil 1 structural elements 104
Figure 4.19 Kerikil 2 structural elements 105
Figure 4.20 Kerikil 3 structural elements 106
Figure 4.21 Structural architecture and geodynamics of the Kutai Basin and Mt Muro ... 108
Figure 4.22 Riedel’s clay model experiment (1929) 110
Figure 4.23 Riedel fracture analysis applied to PBH 112
Figure 4.24 Riedel fracture analysis applied to Kerikil 114
Figure 4.25 Kerikil structural elements 115
Figure 4.26 Kerikil 2 vein and breccia relationships 115

CHAPTER 5 MINERALIZATION AND PARAGENESIS

Figure 5.1 PBH infill stage relationships 121
Figure 5.2 PBH: Stage 1 jasper infill 122
Figure 5.3 PBH: Stage 2 microcrystalline quartz infill - ore zone 123
Figure 5.4 PBH: Stage 2 microcrystalline quartz infill - deep zone ... 124
Figure 5.5 PBH: Stage 3 microcrystalline quartz + sulfide + sulfosalt infill ... 126
Figure 5.6 PBH: Stage 4 coarsely crystalline quartz + base metal sulfide infill ... 127
Figure 5.7 PBH: Stage 5 amethyst infill 128
Figure 5.8 PBH: Stage 6 carbonate vein infill 130
Figure 5.9 Kerikil infill stage relationships 133
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.10</td>
<td>Kerikil: Stage 1 microcrystalline quartz</td>
<td>135</td>
</tr>
<tr>
<td>5.11</td>
<td>Kerikil: Stage 2 microcrystalline quartz + sulfide + sulfosalt infill</td>
<td>137</td>
</tr>
<tr>
<td>5.12</td>
<td>Kerikil: Stage 3 amethyst infill</td>
<td>138</td>
</tr>
<tr>
<td>5.13</td>
<td>Kerikil: Stage 4 carbonate vein infill</td>
<td>140</td>
</tr>
<tr>
<td>5.14</td>
<td>Kerikil: Stage 5 rhodochrosite + sulfide + sulfosalt infill</td>
<td>141</td>
</tr>
<tr>
<td>5.15</td>
<td>Kerikil: Stage 6 microcrystalline quartz + rhodochrosite breccia infill</td>
<td>143</td>
</tr>
<tr>
<td>5.16</td>
<td>Kerikil: Stage 7 amethyst + rhodochrosite infill</td>
<td>144</td>
</tr>
<tr>
<td>5.17</td>
<td>Kerikil: Stage 8 base metal + quartz infill</td>
<td>146</td>
</tr>
<tr>
<td>5.18</td>
<td>Kerikil: Stage 9 pyrite infill</td>
<td>147</td>
</tr>
<tr>
<td>5.19</td>
<td>PBH infill stage paragenesis detailing gangue and ore mineral occurrences</td>
<td>150</td>
</tr>
<tr>
<td>5.20</td>
<td>PBH sulfides (A)</td>
<td>152</td>
</tr>
<tr>
<td>5.21</td>
<td>PBH sulfides (B)</td>
<td>154</td>
</tr>
<tr>
<td>5.22</td>
<td>PBH silver-bearing minerals</td>
<td>156</td>
</tr>
<tr>
<td>5.23</td>
<td>PBH electrum</td>
<td>158</td>
</tr>
<tr>
<td>5.24</td>
<td>Kerikil gangue and ore mineral paragenesis</td>
<td>159</td>
</tr>
<tr>
<td>5.25</td>
<td>Kerikil sulfides (A)</td>
<td>160</td>
</tr>
<tr>
<td>5.26</td>
<td>Kerikil sulfides (B)</td>
<td>161</td>
</tr>
<tr>
<td>5.27</td>
<td>Kerikil silver-bearing minerals</td>
<td>164</td>
</tr>
<tr>
<td>5.28</td>
<td>Kerikil electrum</td>
<td>165</td>
</tr>
<tr>
<td>5.29</td>
<td>Kerikil supergene mineralization</td>
<td>168</td>
</tr>
<tr>
<td>5.30</td>
<td>PBH jasper</td>
<td>170</td>
</tr>
<tr>
<td>5.31</td>
<td>PBH microcrystalline quartz</td>
<td>171</td>
</tr>
<tr>
<td>5.32</td>
<td>PBH crystalline quartz</td>
<td>172</td>
</tr>
<tr>
<td>5.33</td>
<td>PBH amethyst</td>
<td>173</td>
</tr>
<tr>
<td>5.34</td>
<td>PBH adularia</td>
<td>174</td>
</tr>
<tr>
<td>5.35</td>
<td>PBH carbonate</td>
<td>175</td>
</tr>
<tr>
<td>5.36</td>
<td>PBH clays</td>
<td>176</td>
</tr>
<tr>
<td>5.37</td>
<td>Kerikil silica polymorphs</td>
<td>177</td>
</tr>
<tr>
<td>5.38</td>
<td>Kerikil carbonates</td>
<td>179</td>
</tr>
<tr>
<td>5.39</td>
<td>Development of microcrystalline quartz vein in the deep sections of the PBH deposit</td>
<td>183</td>
</tr>
<tr>
<td>5.40</td>
<td>Colloform textures from the Permata veins and from a geothermal production pipe</td>
<td>184</td>
</tr>
<tr>
<td>5.41</td>
<td>Boiling effects and origin of carbonate in the epithermal environment</td>
<td>188</td>
</tr>
<tr>
<td>Figure 5.42</td>
<td>Origin of late calcite at the epithermal Empire Vein, New Zealand</td>
<td>188</td>
</tr>
<tr>
<td>Figure 5.43</td>
<td>Relative elemental abundances of PBH infill stages</td>
<td>193</td>
</tr>
<tr>
<td>Figure 5.44</td>
<td>Relative elemental abundances of Kerikil infill stages</td>
<td>193</td>
</tr>
<tr>
<td>Figure 5.45</td>
<td>Selenium substitution in silver-copper sulfides at Kerikil</td>
<td>197</td>
</tr>
<tr>
<td>Figure 5.46</td>
<td>PBH and Kerikil electrum fineness</td>
<td>199</td>
</tr>
<tr>
<td>Figure 5.47</td>
<td>Mn/Zn ratios in sphalerite across sulfide-sulfosalt bands at PBH</td>
<td>201</td>
</tr>
<tr>
<td>Figure 5.48</td>
<td>PBH structural and hydrothermal evolution</td>
<td>202</td>
</tr>
<tr>
<td>Figure 5.49</td>
<td>Summary of PBH infill characteristics and implications for environment of deposition and primary fluid characteristics</td>
<td>205</td>
</tr>
<tr>
<td>Figure 5.50</td>
<td>Summary of Kerikil infill characteristics and implications for environment of deposition and primary fluid characteristics</td>
<td>206</td>
</tr>
</tbody>
</table>

CHAPTER 6 METAL DISTRIBUTION, ZONATION AND RATIOS

Figure 6.1	Mt Muro CoW gold and base metal surface anomalies	210
Figure 6.2	PBH mean metal value vs. relative level (RL)	212
Figure 6.3	Contoured metal grades on cross section 12 000N, PBH	213
Figure 6.4	Permata long section of contoured precious metal grades	215
Figure 6.5	Hand-contoured long sections of PBH metal ratios	217
Figure 6.6	Kerikil mean metal values vs. relative level (RL)	220
Figure 6.7	Hand-contoured metal grades on cross section 6700N, Kerikil 2	221
Figure 6.8	Kerikil hand-contoured gold grade long sections	222
Figure 6.9	Kerikil hand-contoured silver grade long sections	223
Figure 6.10	Kerikil hand-contoured metal ratio long sections	225
Figure 6.11	PBH and Kerikil vertical metal distribution and relative metal abundances	228

CHAPTER 7 ALTERATION FACIES DISTRIBUTION AND GEOCHEMISTRY

<p>| Figure 7.1 | District-scale alteration as determined from aeromagnetic and radiometric potassium-thorium data | 231 |
| Figure 7.2 | PBH chlorite + carbonate + albite + epidote + pyrite |</p>
<table>
<thead>
<tr>
<th>List of Figures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 7.3</td>
</tr>
<tr>
<td>Figure 7.4</td>
</tr>
<tr>
<td>Figure 7.5</td>
</tr>
<tr>
<td>Figure 7.6</td>
</tr>
<tr>
<td>Figure 7.7</td>
</tr>
<tr>
<td>Figure 7.8</td>
</tr>
<tr>
<td>Figure 7.9</td>
</tr>
<tr>
<td>Figure 7.10</td>
</tr>
<tr>
<td>Figure 7.11</td>
</tr>
<tr>
<td>Figure 7.12</td>
</tr>
<tr>
<td>Figure 7.13</td>
</tr>
<tr>
<td>Figure 7.14</td>
</tr>
<tr>
<td>Figure 7.15</td>
</tr>
<tr>
<td>Figure 7.16</td>
</tr>
<tr>
<td>Figure 7.17</td>
</tr>
<tr>
<td>Figure 7.18</td>
</tr>
<tr>
<td>Figure 7.19</td>
</tr>
<tr>
<td>Figure 7.20</td>
</tr>
<tr>
<td>Figure 7.21</td>
</tr>
<tr>
<td>Figure 7.22</td>
</tr>
<tr>
<td>Figure 7.23</td>
</tr>
<tr>
<td>Figure 7.24</td>
</tr>
<tr>
<td>Figure 7.25</td>
</tr>
<tr>
<td>Figure 7.26</td>
</tr>
<tr>
<td>Figure 7.27</td>
</tr>
<tr>
<td>Figure 7.28</td>
</tr>
</tbody>
</table>

CHAPTER 8 FLUID CHEMISTRY

| Figure 8.1 | PBH and Kerikil $\delta^{34}S$ data for sulfides compared with selected ancient epithermal and modern geothermal systems |
| Figure 8.2 | PBH and Kerikil $\delta^{13}C$ data for carbonate infill stages |
compared with selected ancient and modern geothermal systems..292

Figure 8.3 Plot of PBH and Kerikil δ¹³C and δ¹⁸O data for carbonate infill stages ..293

Figure 8.4 Equilibrium calcite-HCO₃ δ¹³C and δ¹⁸O fractionation compared to Mt Muro carbonates295

Figure 8.5 Carbonate speciation with temperature and pH296

Figure 8.6 δ¹⁸O data for quartz and altered host rocks from PBH and Kerikil compared with selected ancient epithermal and modern geothermal systems.................................299

Figure 8.7 PBH cross section 12 000N showing whole rock δ¹⁸O data for different alteration facies300

Figure 8.8 Kerikil 20 000E long section with hand-contoured whole rock δ¹⁸O values for different alteration facies...303

CHAPTER 9 THE GENESIS OF THE PBH AND KERIKIL DEPOSITS

Figure 9.1 Schematic tectonic evolution and rotation of Borneo ..307

Figure 9.2 Phase 1, 2 and 3: Volcanic and structural setting of Mt Muro mineralization308

Figure 9.3 Phase 2: Hydrothermal system evolution and ore deposition ..311

Figure 9.4 Phase 4: Uplift, weathering and erosion ..315

CHAPTER 10 CONCLUSIONS

Figure 10.1 CoW maps showing footprint of Mt Muro mineralization and prospective regions323

Figure 10.2 Block model showing possible mineralization styles and locations at Mt Muro326

Figure 10.3 Deposit-scale vectors to mineralization at Mt Muro ..327
LIST OF TABLES

CHAPTER 1. INTRODUCTION
Table 1.1 Mining statistics for main Mt Muro deposits 7

CHAPTER 2. REGIONAL GEOLOGY AND METALLOGENY
Table 2.1 Major epithermal gold deposits and prospects of the Kalimantan Gold Belt ... 21

CHAPTER 3. VOLCANIC FACIES, ARCHITECTURE AND GEOCHEMISTRY
Table 3.1 Geochemistry of least altered PBH coherent facies 55
Table 3.2 Geochemistry of least altered Kerikil coherent facies 57
Table 3.3 Summary of the principal lithofacies features, interpretations and environment of deposition at PBH and Kerikil .. 72

CHAPTER 4. STRUCTURE
Table 4.1 Summary of PBH and Kerikil pre-, syn-, and post-mineralization structural features, descriptions and their orientations .. 118

CHAPTER 5. MINERALISATION AND PARAGENESIS
Table 5.1 Geochemistry of PBH infill stages .. 191
Table 5.2 Geochemistry of Kerikil infill stages 192

CHAPTER 6. METAL DISTRIBUTION, ZONING AND RATIOS
Table 6.1 PBH metal values vs. relative level (RL) 212
Table 6.2 Kerikil metal values vs. relative level (RL) 220

CHAPTER 7. ALTERATION FACIES, DISTRIBUTION AND GEOCHEMISTRY
Table 7.1 Comparison of SWIR to XRD results for selected PBH and Kerikil alteration facies .. 256

CHAPTER 8. FLUID CHEMISTRY
Table 8.1 PBH and Kerikil fluid inclusion microthermometry (Simmons and Browne, 1990) .. 285
Table 8.2 PBH and Kerikil 34S values ... 288
Table 8.3 PBH and Kerikii C-O isotope values .. 291
Table 8.4 PBH and Kerikii quartz 6\(^{18}\)O values for vein and
breccia infill stages... 297
Table 8.5 PBH and Kerikii whole rock 6\(^{18}\)O values
alteration facies .. 302